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Abstract. For a prime p ≥ 5, we compute the algebraic K-theory modulo p and v1 of the mod p
Adams summand, using topological cyclic homology. On the way, we evaluate its modulo p and v1
topological Hochschild homology. Using a localization sequence, we also compute the K-theory
modulo p and v1 of the first Morava K-theory.
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1. Introduction

In this paper we continue the investigation from [AR02] and [Aus10] of the algebraic K-
theory of topological K-theory and related S-algebras. Let `p be the p-complete Adams
summand of connective complex K-theory, and let `/p = k(1) be the first connective
Morava K-theory. It has a unique S-algebra structure [Ang11, Th. A], and we show in
Section 2 that `/p is an `p-algebra (in uncountably many ways), so that K(`/p) is a
K(`p)-module spectrum.

Let V (1) = S/(p, v1) be the type 2 Smith–Toda complex (see Section 4 below for
a definition). It is a homotopy commutative ring spectrum for p ≥ 5, with a preferred
periodic class v2 ∈ V (1)∗ of degree 2p2

−2. We write V (1)∗(X) = π∗(V (1)∧X) for the
V (1)-homotopy of a spectrumX. Multiplication by v2 makes V (1)∗(X) a P(v2)-module,
where P(v2) denotes the polynomial algebra over Fp generated by v2. We denote by
Fp{x1, . . . , xn} the Fp-vector space generated by x1, . . . , xn, and by E(x1, . . . , xn) the
exterior algebra over Fp generated by x1, . . . , xn.

We computed the V (1)-homotopy of K(`p) in [AR02, Th. 9.1], showing that it is
essentially a free P(v2)-module on (4p+4) generators. The following is our main result,
corresponding to Theorem 7.7 in the body of the paper.
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Theorem 1.1. Let p ≥ 5 be a prime and let `/p = k(1) be the first connective Morava
K-theory spectrum. There is an isomorphism of P(v2)-modules

V (1)∗K(`/p) ∼= P(v2)⊗ E(ε̄1)⊗ Fp{1, ∂λ2, λ2, ∂v2}

⊕ P(v2)⊗ E(dlog v1)⊗ Fp{tdv2 | 0 < d < p2
− p, p - d}

⊕ P(v2)⊗ E(ε̄1)⊗ Fp{tdpλ2 | 0 < d < p}.

Here |λ1| = |ε̄1| = 2p − 1, |λ2| = 2p2
− 1, |v2| = 2p2

− 2, |dlog v1| = 1, |∂| = −1
and |t | = −2. This is a free P(v2)-module of rank 2p2

− 2p + 8 and of zero Euler
characteristic.

We prove this theorem by means of the cyclotomic trace map [BHM93] to topological
cyclic homology T C(`/p;p). Along the way we evaluate V (1)∗THH(`/p), where THH
denotes topological Hochschild homology, as well as V (1)∗T C(`/p;p) (see Proposi-
tion 4.2 and Theorem 7.6).

Let Lp be the p-complete Adams summand of periodic complex K-theory, and let
L/p = K(1) be the first periodic Morava K-theory. The localization cofibre sequence
K(Zp)→ K(`p)→ K(Lp)→ 6K(Zp) of Blumberg and Mandell [BM08, p. 157] has
the mod p Adams analogue

K(Z/p)→ K(`/p)→ K(L/p)→ 6K(Z/p)

(see Proposition 2.2 below). Using Quillen’s computation [Qui72, Th. 7] of K(Z/p), we
obtain the following consequence:

Corollary 1.2. Let p ≥ 5 be a prime and let L/p = K(1) be the first Morava K-theory
spectrum. There is an isomorphism of P(v±1

2 )-modules

V (1)∗K(L/p)[v−1
2 ] ∼= V (1)∗K(`/p)[v−1

2 ].

If there is a class dlog v1 ∈ V (1)1K(L/p) with λ2 = v2 · dlog v1, then there is an
isomorphism of P(v2)-modules

V (1)∗K(L/p) ∼= P(v2)⊗ E(ε̄1)⊗ Fp{1, ∂λ2, dlog v1, ∂v2}

⊕ P(v2)⊗ E(dlog v1)⊗ Fp{tdv2 | 0 < d < p2
− p, p - d}

⊕ P(v2)⊗ E(ε̄1)⊗ Fp{tdpv2 dlog v1 | 0 < d < p},

where the degrees of the generators are as in Theorem 1.1. This is a free P(v2)-module
of rank 2p2

− 2p + 8 and of zero Euler characteristic.

Our far-reaching aim, which partially motivated the computations presented here, is to
conceptually understand the algebraic K-theory of `p and other commutative S-algebras
in terms of localization and Galois descent, in the same way as we understand the al-
gebraic K-theory of rings of integers in (local) number fields or more general regular
rings. The first task is to relate K(`p) to the algebraic K-theory of its “residue fields”
and “fraction field”, for which we expect a description in terms of Galois cohomology to
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exist, starting with the Galois theory for commutative S-algebras developed by the second
author [Rog08]. The residue rings of `p appear to be `/p,HZp andHZ/p, while the frac-
tion field ff (`p) is more mysterious. For our purposes, its algebraic K-theory K(ff (`p))
should fit in a natural localization cofibre sequence of spectra

K(L/p)→ K(Lp)→ K(ff (`p))→ 6K(L/p).

An obvious candidate for ff (`p) is provided by the algebraic localization Lp[p−1] =
LQp, having as coefficients the graded field Qp[v±1

1 ]. However, by the following corol-
lary, this is too naive.

Corollary 1.3. The spectraK(L/p),K(Lp) andK(LQp) cannot possibly fit in a cofibre
sequence

K(L/p)→ K(Lp)→ K(LQp)→ 6K(L/p).

Indeed, the above computation implies that V (1)∗K(L/p)[v−1
2 ] and V (1)∗K(Lp)[v−1

2 ]
are not abstractly isomorphic, while V (1)∗K(LQp)[v−1

2 ] is zero since it is an algebra over
V (1)∗K(Qp)[v−1

2 ] = 0. The last equality follows from the computation of the p-primary
homotopy type of K(Qp) [HM03, Th. D], which shows that V (1)∗K(Qp) is v2-torsion.

In conclusion, the conjectural fraction field ff (`p) appears to be a localization of Lp
away fromL/p less drastic than the algebraic localizationLp[p−1] = LQp. We elaborate
more on this issue in [AR].

The paper is organized as follows. In Section 2 we fix our notation, show that `/p ad-
mits the structure of an associative `p-algebra, and give a similar discussion for ku/p and
the periodic versions L/p and KU/p. Section 3 contains the computation of the mod p
homology of THH(`/p), and in Section 4 we evaluate its V (1)-homotopy. In Section 5 we
show that the Cpn -fixed points and Cpn -homotopy fixed points of THH(`/p) are closely
related, and use this to inductively determine their V (1)-homotopy in Section 6. Finally,
in Section 7 we achieve the computation of T C(`/p;p) and K(`/p) in V (1)-homotopy.

Notation and conventions. Let p be a fixed prime. We write E(x) = Fp[x]/(x2) for the
exterior algebra, P(x) = Fp[x] for the polynomial algebra and P(x±1) = Fp[x, x−1] for
the Laurent polynomial algebra on one generator x, and similarly for a list of generators.
We will also write 0(x) = Fp{γi(x) | i ≥ 0} for the divided power algebra, with γi(x) ·
γj (x) = (i, j)γi+j (x), where (i, j) = (i+j)!/i!j ! is the binomial coefficient. We use the
obvious abbreviations γ0(x) = 1 and γ1(x) = x. Finally, we write Ph(x) = Fp[x]/(xh)
for the truncated polynomial algebra of height h, and recall the isomorphism 0(x) ∼=

Pp(γpe (x) | e ≥ 0) in characteristic p. We write X(p) and Xp for the p-localization
and the p-completion, respectively, of any spectrum or abelian group X. In the spectral
sequences (of Fp-modules) discussed below, we often determine differentials only up
to multiplication by a unit. We use the notation d(x) .= y to indicate that the equation
d(x) = αy holds for some unit α ∈ Fp.
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2. Base change squares of S-algebras

Let p be a prime, even or odd for now. Let ku and KU be the connective and the periodic
complex K-theory spectra, with homotopy rings ku∗ = Z[u] and KU∗ = Z[u±1], where
|u| = 2. Let ` = BP 〈1〉 and L = E(1) be the p-local Adams summands, with `∗ =
Z(p)[v1] and L∗ = Z(p)[v±1

1 ], where |v1| = 2p − 2. The inclusion ` → ku(p) maps v1

to up−1. Alternate notations in the p-complete cases are KUp = E1 and Lp = Ê(1).
These ring spectra are all commutative S-algebras, in the sense that each admits a unique
E∞ ring spectrum structure. See [BR05, p. 692] for proofs of uniqueness in the periodic
cases.

Let ku/p and KU/p be the connective and periodic mod p complexK-theory spectra,
with coefficients (ku/p)∗ = Z/p[u] and (KU/p)∗ = Z/p[u±1]. These are 2-periodic
versions of the first Morava K-theory spectra `/p = k(1) and L/p = K(1), with
(`/p)∗ = Z/p[v1] and (L/p)∗ = Z/p[v±1

1 ]. Each of these can be constructed as the
cofibre of the multiplication by p map, as a module over the corresponding commutative

S-algebra. For example, there is a cofibre sequence of ku-modules ku
p
−→ ku

i
−→ ku/p→

6ku.
Let HR be the Eilenberg–Mac Lane spectrum of a ring R. When R is associative, HR

admits a unique associative S-algebra structure, and when R is commutative, HR admits
a unique commutative S-algebra structure. The zeroth Postnikov section defines unique
maps of commutative S-algebras π : ku → HZ and π : ` → HZ(p), which can be
followed by unique commutative S-algebra maps to HZ/p.

The ku-module spectrum ku/p does not admit the structure of a commutative ku-
algebra. It cannot even be an E2 or H2 ring spectrum, since the homomorphism induced
in mod p homology by the resulting map π : ku/p → HZ/p of H2 ring spectra would
not commute with the homology operation Q1(τ̄0) = τ̄1 in the target H∗(HZ/p;Fp)
[BMMS86, III.2.3]. Similar remarks apply for KU/p, `/p and L/p. Associative algebra
structures, or A∞ ring spectrum structures, are easier to come by. The following result is
a direct application of the methods of [Laz01, §§9–11]. We adapt the notation of [BJ02,
§3] to provide some details in our case.

Proposition 2.1. The ku-module spectrum ku/p admits the structure of an associative
ku-algebra, but the structure is not unique. Similar statements hold for KU/p as a KU-
algebra, `/p as an `-algebra and L/p as an L-algebra.

Proof. We construct ku/p as the (homotopy) limit of its Postnikov tower of associative
ku-algebras P 2m−2

= ku/(p, um), with coefficient rings ku/(p, um)∗ = ku∗/(p, u
m)

for m ≥ 1. To start the induction, P 0
= HZ/p is a ku-algebra via i ◦ π : ku→ HZ→

HZ/p. Assume inductively for m ≥ 1 that P = P 2m−2 has been constructed. We will
define P 2m by a (homotopy) pullback diagram

P 2m //

��

P

in1
��

P
d // P ∨62m+1HZ/p
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in the category of associative ku-algebras. Here

d ∈ ADer2m+1
ku (P,HZ/p) ∼= THH2m+2

ku (P,HZ/p)

is an associative ku-algebra derivation of P with values in62m+1HZ/p, and the group of
such can be identified with the indicated topological Hochschild cohomology group of P
over ku. We recall that these are the homotopy groups (cohomologically graded) of the
function spectrum FP∧kuP op(P,HZ/p). The composite map pr2◦d : P → 62m+1HZ/p
of ku-modules, where pr2 projects onto the second wedge summand, is restricted to equal
the ku-module Postnikov k-invariant of ku/p in

H 2m+1
ku (P ;Z/p) = π0Fku(P,6

2m+1HZ/p).

We compute that π∗(P ∧ku P op) = ku∗/(p, u
m)⊗E(τ0, τ1,m), where |τ0| = 1, |τ1,m| =

2m+1 andE(−) denotes the exterior algebra on the given generators. (For p = 2, the use
of the opposite product is essential here [Ang08, §3].) The function spectrum description
of topological Hochschild cohomology leads to the spectral sequence

E
∗,∗
2 = Ext∗,∗π∗(P∧kuP op)(π∗(P ),Z/p) ∼= Z/p[y0, y1,m]⇒ THH∗ku(P,HZ/p),

where y0 and y1,m have cohomological bidegrees (1, 1) and (1, 2m+1), respectively. The
spectral sequence collapses at E2 = E∞, since it is concentrated in even total degrees. In
particular,

ADer2m+1
ku (P,HZ/p) ∼= Fp{y1,m, y

m+1
0 }.

Additively, H 2m+1
ku (P ;Z/p) ∼= Fp{Q1,m} is generated by a class dual to τ1,m, which is

the image of y1,m under left composition with pr2. It equals the ku-module k-invariant
of ku/p. Thus there are precisely p choices d = y1,m + αy

m+1
0 , with α ∈ Fp, for how

to extend any given associative ku-algebra structure on P = P 2m−2 to one on P 2m
=

ku/(p, um+1). In the limit, we find that there are an uncountable number of associative
ku-algebra structures on ku/p = holimm P

2m, each indexed by a sequence of choices
α ∈ Fp for all m ≥ 1.

The periodic spectrum KU/p can be obtained from ku/p by Bousfield KU-localiza-
tion in the category of ku-modules [EKMM97, VIII.4], which makes it an associative KU-
algebra. The classification of periodic S-algebra structures is the same as in the connective
case, since the original ku-algebra structure on ku/p can be recovered from that on KU/p
by a functorial passage to the connective cover. To construct `/p as an associative `-
algebra, or L/p as an associative L-algebra, replace u by v1 in these arguments. ut

By varying the ground S-algebra, we obtain the same conclusions about ku/p as a ku(p)-
algebra or kup-algebra, and about `/p as an `p-algebra.

For each choice of ku-algebra structure on ku/p, the zeroth Postnikov section

π : ku/p→ HZ/p



1046 Christian Ausoni, John Rognes

is a ku-algebra map, with the unique ku-algebra structure on the target. Hence there is a
commutative square of associative ku-algebras

ku
i //

π

��

ku/p

π

��

HZ i // HZ/p

and similarly in the p-local and p-complete cases. In view of the weak equivalence
HZ ∧ku ku/p ' HZ/p, this square expresses the associative HZ-algebra HZ/p as
the base change of the associative ku-algebra ku/p along π : ku→ HZ. Likewise, there
is a commutative square of associative `p-algebras

`p
i //

π

��

`/p

π

��

HZp
i // HZ/p

(2.1)

that expresses HZ/p as the base change of `/p along `p → HZp, and similarly in the
p-local case. By omission of structure, these squares are also diagrams of S-algebras and
S-algebra maps.

We end this section by formulating the mod p analogue of the localization cofibre
sequence in algebraic K-theory

K(Zp)→ K(`p)→ K(Lp)→ 6K(Zp) (2.2)

conjectured by the second author and established by Blumberg and Mandell [BM08,
p. 157].

Proposition 2.2. There is a localization cofibre sequence of spectra

K(Z/p)→ K(`/p)→ K(L/p)→ 6K(Z/p)

where the first map is the transfer and the second map is induced by the localization
`/p→ `/p[v−1

1 ] = L/p.

Proof. The proof of the existence of the localization sequence (2.2) given in [BM08,
pp. 160–163] and the identification of the transfer map adapt without change to cover the
mod p analogue stated in this proposition. Here we use that a finite cell `/p-module that
is v1-torsion has finite homotopy groups, and the nonzero groups are concentrated in a
finite range of degrees. ut

3. Topological Hochschild homology

We shall compute the V (1)-homotopy of the topological Hochschild homology THH(−)
and topological cyclic homology T C(−;p) of the S-algebras in diagram (2.1), for primes
p ≥ 5. Passing to connective covers, this also computes the V (1)-homotopy of the alge-
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braic K-theory spectra appearing in that square. With these coefficients, or more gener-
ally, after p-adic completion, the functors THH and T C are insensitive to p-completion
in the argument, so we shall simplify the notation slightly by working with the associative
S-algebras ` and HZ(p) in place of `p and HZp. For ordinary rings R we almost always
shorten notations like THH(HR) to THH(R).

The computations follow the strategy of [Bök], [BM94], [BM95] and [HM97] for
HZ/p and HZ, and of [MS93] and [AR02] for `. See also [AR05, §§4–7] for further
discussion of the THH-part of such computations. In this section we shall compute the
mod p homology of the topological Hochschild homology of `/p as a module over the
corresponding homology for `, for any odd prime p.

Remark 3.1. Our computations are based on comparisons, using the maps displayed in
diagram (2.1) above. We will abuse notation and use the same name for classes in the
homology or V (1)-homotopy of THH(`p), THH(`/p), THH(Zp) or THH(Z/p), when
these classes unambiguously correspond to each other under the homomorphisms induced
by the maps i and π in (2.1). We also use this abuse of notation in later sections for the
V (1)-homotopy of T C, etc.

We write H∗(−) for homology with mod p coefficients. It takes values in graded
A∗-comodules, where A∗ is the dual Steenrod algebra [Mil58, Th 2]. Explicitly (for p
odd),

A∗ = P(ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ 0)

with coproduct

ψ(ξ̄k) =
∑
i+j=k

ξ̄i ⊗ ξ̄
pi

j and ψ(τ̄k) = 1⊗ τ̄k +
∑
i+j=k

τ̄i ⊗ ξ̄
pi

j .

Here ξ̄0 = 1, ξ̄k = χ(ξk) has degree 2(pk−1) and τ̄k = χ(τk) has degree 2pk−1, where
χ is the canonical conjugation [MM65, 8.4]. Then the maps i and the zeroth Postnikov
sections π of (2.1) induce identifications

H∗(HZ(p)) = P(ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ 1),

H∗(`) = P(ξ̄k | k ≥ 1)⊗ E(τ̄k | k ≥ 2),

H∗(`/p) = P(ξ̄k | k ≥ 1)⊗ E(τ̄0, τ̄k | k ≥ 2)

as A∗-comodule subalgebras of H∗(HZ/p) = A∗. We often make use of the following
A∗-comodule coactions:

ν(τ̄0) = 1⊗ τ̄0 + τ̄0 ⊗ 1, ν(ξ̄1) = 1⊗ ξ̄1 + ξ̄1 ⊗ 1,

ν(τ̄1) = 1⊗ τ̄1 + τ̄0 ⊗ ξ̄1 + τ̄1 ⊗ 1, ν(ξ̄2) = 1⊗ ξ̄2 + ξ̄1 ⊗ ξ̄
p

1 + ξ̄2 ⊗ 1,

ν(τ̄2) = 1⊗ τ̄2 + τ̄0 ⊗ ξ̄2 + τ̄1 ⊗ ξ̄
p

1 + τ̄2 ⊗ 1.

The Bökstedt spectral sequences

E2(B) = HH∗(H∗(B))⇒ H∗(THH(B))
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for the commutative S-algebras B = HZ/p, HZ(p) and ` begin

E2(Z/p) = A∗ ⊗ E(σ ξ̄k | k ≥ 1)⊗ 0(σ τ̄k | k ≥ 0),

E2(Z(p)) = H∗(HZ(p))⊗ E(σ ξ̄k | k ≥ 1)⊗ 0(σ τ̄k | k ≥ 1),

E2(`) = H∗(`)⊗ E(σ ξ̄k | k ≥ 1)⊗ 0(σ τ̄k | k ≥ 2).

Here HH∗(H∗(B)) denotes the Hochschild homology of the graded Fp-algebra H∗(B).
In the above formula we made use of the Fp-linear operator σ : H∗(B)→ HH1(H∗(B)),
x 7→ σx, where σx is the class represented by 1⊗ x − x⊗ 1 in the Hochschild complex.
Notice that σ is the restriction of Connes’ operator d to HH0(H∗(B)) = H∗(B), and is a
derivation in the sense that

σ(xy) = xσ(y)+ (−1)|x||y|yσ(x)

for all x, y ∈ H∗(B). These spectral sequences are (graded) commutative A∗-comodule
algebra spectral sequences, and there are differentials

dp−1(γjσ τ̄k)
.
= σ ξ̄k+1 · γj−pσ τ̄k

for j ≥ p and k ≥ 0 (see [Bök, Lem. 1.3], [Hun96, Th. 1] or [Aus05, Lem. 5.3]), leaving

E∞(Z/p) = A∗ ⊗ Pp(σ τ̄k | k ≥ 0),

E∞(Z(p)) = H∗(HZ(p))⊗ E(σ ξ̄1)⊗ Pp(σ τ̄k | k ≥ 1),

E∞(`) = H∗(`)⊗ E(σ ξ̄1, σ ξ̄2)⊗ Pp(σ τ̄k | k ≥ 2).

The inclusion of 0-simplices η : B → THH(B) is split for commutativeB by the augmen-
tation ε : THH(B) → B. Thus there are unique representatives in Bökstedt filtration 1,
with zero augmentation, for each of the classes σx. There are multiplicative extensions
(σ τ̄k)

p
= σ τ̄k+1 for k ≥ 0 (see [AR05, Prop. 5.9]), so

H∗(THH(Z/p)) = A∗ ⊗ P(σ τ̄0),

H∗(THH(Z(p))) = H∗(HZ(p))⊗ E(σ ξ̄1)⊗ P(σ τ̄1),

H∗(THH(`)) = H∗(`)⊗ E(σ ξ̄1, σ ξ̄2)⊗ P(σ τ̄2)

as A∗-comodule algebras. The A∗-comodule coactions are given by

ν(σ τ̄0) = 1⊗ σ τ̄0, ν(σ ξ̄1) = 1⊗ σ ξ̄1,

ν(σ τ̄1) = 1⊗ σ τ̄1 + τ̄0 ⊗ σ ξ̄1, ν(σ ξ̄2) = 1⊗ σ ξ̄2,

ν(σ τ̄2) = 1⊗ σ τ̄2 + τ̄0 ⊗ σ ξ̄2.

(3.1)

The natural map π∗ : THH(`)→ THH(Z(p)) induced by π : `→ Z(p) takes σ ξ̄2 to 0 and
σ τ̄2 to (σ τ̄1)

p. The natural map i∗ : THH(Z(p)) → THH(Z/p) induced by i : Z(p) →
Z/p takes σ ξ̄1 to 0 and σ τ̄1 to (σ τ̄0)

p.
The Bökstedt spectral sequence for the associative S-algebra B = `/p begins

E2(`/p) = H∗(`/p)⊗ E(σ ξ̄k | k ≥ 1)⊗ 0(σ τ̄0, σ τ̄k | k ≥ 2).
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It is an A∗-comodule module spectral sequence over the Bökstedt spectral sequence for `,
since the `-algebra multiplication ` ∧ `/p → `/p is a map of associative S-algebras.
However, it is not itself an algebra spectral sequence, since the product on `/p is not
commutative enough to induce a natural product structure on THH(`/p). Nonetheless,
we will use the algebra structure present at the E2-term to help in naming classes.

The map π : `/p → HZ/p induces an injection of Bökstedt spectral sequence E2-
terms, so there are differentials generated algebraically by

dp−1(γjσ τ̄k)
.
= σ ξ̄k+1 · γj−pσ τ̄k

for j ≥ p, k = 0 or k ≥ 2, leaving

E∞(`/p) = H∗(`/p)⊗ E(σ ξ̄2)⊗ Pp(σ τ̄0, σ τ̄k | k ≥ 2) (3.2)

as an A∗-comodule module over E∞(`). In order to obtain H∗(THH(`/p)), we need
to resolve the A∗-comodule and H∗(THH(`))-module extensions. This is achieved in
Lemma 3.3 below.

The natural map π∗ : E∞(`/p) → E∞(Z/p) is an isomorphism in total degrees
≤ 2p − 2 and injective in total degrees ≤ 2p2

− 2. The first class in the kernel is σ ξ̄2.
Hence there are unique classes

1, τ̄0, σ τ̄0, τ̄0σ τ̄0, . . . , (σ τ̄0)
p−1

in degrees 0 ≤ ∗ ≤ 2p − 2 of H∗(THH(`/p)), mapping to classes with the same names
in H∗(THH(Z/p)). More concisely, these are the monomials τ̄ δ0 (σ τ̄0)

i for 0 ≤ δ ≤ 1 and
0 ≤ i ≤ p − 1, except that the degree 2p − 1 case (δ, i) = (1, p − 1) is omitted. The
A∗-comodule coaction on these classes is given by the same formulas in H∗(THH(`/p))
as in H∗(THH(Z/p)), cf. (3.1).

There is also a class ξ̄1 in degree 2p − 2 of H∗(THH(`/p)) mapping to a class with
the same name, and same A∗-coaction, in H∗(THH(Z/p)).

In degree 2p − 1, π∗ is a map of extensions from

0→ Fp{ξ̄1τ̄0} → H2p−1(THH(`/p))→ Fp{τ̄0(σ τ̄0)
p−1
} → 0

to
0→ Fp{τ̄1, ξ̄1τ̄0} → H2p−1(THH(Z/p))→ Fp{τ̄0(σ τ̄0)

p−1
} → 0.

The latter extension is canonically split by the augmentation ε : THH(Z/p) → HZ/p,
which uses the commutativity of the S-algebra HZ/p.

In degree 2p, the map π∗ goes from

H2p(THH(`/p)) = Fp{ξ̄1σ τ̄0}

to
0→ Fp{τ̄0τ̄1} → H2p(THH(Z/p))→ Fp{σ τ̄1, ξ̄1σ τ̄0} → 0.

Again the last extension is canonically split.
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Lemma 3.2. There is a unique class y in H2p−1(THH(`/p)) represented by τ̄0(σ τ̄0)
p−1

in E∞p−1,p(`/p) and mapped by π∗ to τ̄0(σ τ̄0)
p−1
− τ̄1 in H∗(THH(Z/p)).

Proof. This follows from naturality of the suspension operator σ and the multiplicative
relation (σ τ̄0)

p
= σ τ̄1 in H∗(THH(Z/p)). A class y in H2p−1(THH(`/p)) represented

by τ̄0(σ τ̄0)
p−1 is determined modulo ξ̄1τ̄0. Its image in H2p−1(THH(Z/p)) thus has

the form ατ̄1 + τ̄0(σ τ̄0)
p−1 modulo ξ̄1τ̄0, for some α ∈ Fp. The suspension σy lies

in H2p(THH(`/p)) = Fp{ξ̄1σ τ̄0}, so its image in H2p(THH(Z/p)) is 0 modulo τ̄0τ̄1
and ξ̄1σ τ̄0. It is also the suspension of ατ̄1 + τ̄0(σ τ̄0)

p−1 modulo ξ̄1τ̄0, which equals
σ(ατ̄1) + (σ τ̄0)

p
= (α + 1)σ τ̄1. In particular, the coefficient α + 1 of σ τ̄1 is 0, so

α = −1. ut

Let
H∗(THH(`))/(σ ξ̄1) = H∗(`)⊗ E(σ ξ̄2)⊗ P(σ τ̄2)

denote the quotient algebra of H∗(THH(`)) by the ideal generated by σ ξ̄1.

Lemma 3.3. The classes

1 , τ̄0 , σ τ̄0 , τ̄0σ τ̄0 , . . . , (σ τ̄0)
p−1 , τ̄0(σ τ̄0)

p−1,

in E∞(`/p) represent unique homology classes in H∗(THH(`/p)), which by abuse of
notation will be denoted

1 , τ̄0 , σ τ̄0 , τ̄0σ τ̄0 , . . . , (σ τ̄0)
p−1 , y,

mapping under π∗ to classes with the same names inH∗(THH(Z/p)), except for y, which
maps to

τ̄0(σ τ̄0)
p−1
− τ̄1.

The graded H∗(THH(`))-module H∗(THH(`/p)) is a free H∗(THH(`))/(σ ξ̄1)-module
of rank 2p generated by these classes in degrees 0 through 2p − 1:

H∗(THH(`/p)) = H∗(THH(`))/(σ ξ̄1)⊗ Fp{1, τ̄0, σ τ̄0, τ̄0σ τ̄0, . . . , (σ τ̄0)
p−1, y}.

The A∗-comodule coactions are given by

ν((σ τ̄0)
i) = 1⊗ (σ τ̄0)

i for 0 ≤ i ≤ p − 1,

ν(τ̄0(σ τ̄0)
i) = 1⊗ τ̄0(σ τ̄0)

i
+ τ̄0 ⊗ (σ τ̄0)

i for 0 ≤ i ≤ p − 2,

ν(y) = 1⊗ y + τ̄0 ⊗ (σ τ̄0)
p−1
− τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1.

Proof. H∗(`/p) is freely generated as a module over H∗(`) by 1 and τ̄0, and the classes
σ ξ̄2 and σ τ̄2 in H∗(THH(`)) induce multiplication by the same symbols in E∞(`/p), as
given in (3.2). This generates all of E∞(`/p) from the 2p classes τ̄ δ0 (σ τ̄0)

i for 0 ≤ δ ≤ 1
and 0 ≤ i ≤ p − 1.

We claim that multiplication by σ ξ̄1 acts trivially on H∗(THH(`/p)). It suffices to
verify this on the module generators τ̄ δ0 (σ τ̄0)

i , for which the product with σ ξ̄1 remains in
the range of degrees where the map to H∗(THH(Z/p)) is injective. The action of σ ξ̄1 is
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trivial on H∗(THH(Z/p)), since dp−1(γpσ τ̄0)
.
= σ ξ̄1 and ε(σ ξ̄1) = 0, and this implies

the claim.
The A∗-comodule coaction on each module generator, including y, is determined by

that on its image under π∗. In the latter case, for example, we have

(1⊗ π∗)(ν(y)) = ν(π∗(y)) = ν(τ̄0(σ τ̄0)
p−1
− τ̄1)

= 1⊗ τ̄0(σ τ̄0)
p−1
+ τ̄0 ⊗ (σ τ̄0)

p−1
− 1⊗ τ̄1 − τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1

= (1⊗ π∗)(1⊗ y + τ̄0 ⊗ (σ τ̄0)
p−1
− τ̄0 ⊗ ξ̄1 − τ̄1 ⊗ 1),

and this proves our formula for ν(y) since 1⊗ π∗ is injective in this degree. ut

Remark 3.4. Notice that Lemma 3.3 implies that for different choices of `-module struc-
ture on `/p, the resulting homology groups H∗(THH(`/p)) are (abstractly) isomorphic
as graded H∗(THH(`))-modules and A∗-comodules.

4. Passage to V (1)-homotopy

For p ≥ 5 the Smith–Toda complex V (1) = S ∪p e
1
∪α1 e

2p−1
∪p e

2p is a homotopy
commutative ring spectrum [Smi70, Th. 5.1], [Oka84, Ex. 4.5]. It is defined as the map-
ping cone of the Adams self-map v1 : 62p−2V (0)→ V (0) of the mod p Moore spectrum
V (0) = S ∪p e1. Hence there is a cofibre sequence

62p−2V (0)
v1
−→ V (0)

i1
−→ V (1)

j1
−→ 62p−1V (0).

There are some choices of orientations involved in fixing such an exact triangle (cf. for
instance [HM03, Sect. 2.1]). The composite map β1,1 = i1j1 : V (1) → 62p−1V (1)
defines the primary v1-Bockstein homomorphism, acting naturally on V (1)∗(X).

In this section we compute V (1)∗THH(`/p) as a module over V (1)∗THH(`), for any
prime p ≥ 5. The unique ring spectrum map from V (1) to HZ/p induces the identifica-
tion

H∗(V (1)) = E(τ0, τ1)

(no conjugations) as A∗-comodule subalgebras of A∗ (see [Tod71, §4]). Here

ν(τ0) = 1⊗ τ0 + τ0 ⊗ 1, ν(τ1) = 1⊗ τ1 + ξ1 ⊗ τ0 + τ1 ⊗ 1.

A form of the following lemma goes back to [Whi62, p. 271].

Lemma 4.1. Let M be any HZ/p-module spectrum. Then M is equivalent to a wedge
sum of suspensions of HZ/p. Hence H∗(M) is a sum of shifted copies of A∗ as an A∗-
comodule, and the Hurewicz homomorphism π∗(M)→ H∗(M) identifies π∗(M) with the
A∗-comodule primitives in H∗(M).
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Proof. The module action map λ : HZ/p ∧M → M is a retraction, so π∗(M) is a direct
summand of π∗(HZ/p ∧ M) = H∗(M), hence is a graded Z/p-vector space. Choose
maps α : Sn → M that represent a basis for this vector space. The wedge sum of the
maps

λ ◦ (1 ∧ α) : 6nHZ/p = HZ/p ∧ Sn→ M

is the desired π∗-isomorphism
∨
α 6

nHZ/p→ M . ut

For each `-algebra B, V (1) ∧ THH(B) is a module spectrum over V (1) ∧ THH(`) and
thus over V (1) ∧ ` ' HZ/p, so H∗(V (1) ∧ THH(B)) is a sum of copies of A∗ as an
A∗-comodule, by Lemma 4.1. In particular, V (1)∗THH(B) = π∗(V (1) ∧ THH(B)) is
naturally identified with the subgroup of A∗-comodule primitives in

H∗(V (1) ∧ THH(B)) ∼= H∗(V (1))⊗H∗(THH(B))

with the diagonal A∗-comodule coaction. We write v ∧ x for the image of v ⊗ x under
this identification, with v ∈ H∗(V (1)) and x ∈ H∗(THH(B)). Let

ε0 = 1 ∧ τ̄0 + τ0 ∧ 1,

ε1 = 1 ∧ τ̄1 + τ0 ∧ ξ̄1 + τ1 ∧ 1,

λ1 = 1 ∧ σ ξ̄1,

λ2 = 1 ∧ σ ξ̄2,

µ0 = 1 ∧ σ τ̄0,

µ1 = 1 ∧ σ τ̄1 + τ0 ∧ σ ξ̄1,

µ2 = 1 ∧ σ τ̄2 + τ0 ∧ σ ξ̄2.
(4.1)

These are all A∗-comodule primitive, when defined, in H∗(V (1) ∧ THH(B)) for B = `,
`/p, HZp or HZ/p (see Remark 3.1). By a dimension count,

V (1)∗THH(Z/p) = E(ε0, ε1)⊗ P(µ0),

V (1)∗THH(Z(p)) = E(ε1)⊗ E(λ1)⊗ P(µ1),

V (1)∗THH(`) = E(λ1, λ2)⊗ P(µ2)

as commutative Fp-algebras. The map π : ` → HZ(p) takes λ2 to 0 and µ2 to µp1 . The
map i : HZ(p) → HZ/p takes λ1 to 0 and µ1 to µp0 . Note that µ2 ∈ V (1)2p2THH(`)
was simply denoted µ in [AR02].

In degrees ≤ 2p − 2 of H∗(V (1) ∧ THH(`/p)) the classes

µi0 := 1 ∧ (σ τ̄0)
i (4.2)

for 0 ≤ i ≤ p − 1 and

ε0µ
i
0 := 1 ∧ τ̄0(σ τ̄0)

i
+ τ0 ∧ (σ τ̄0)

i (4.3)

for 0 ≤ i ≤ p − 2 are A∗-comodule primitive, hence lift uniquely to V (1)∗THH(`/p).
These map to the classes εδ0µ

i
0 in V (1)∗THH(Z/p) for 0 ≤ δ ≤ 1 and 0 ≤ i ≤ p − 1,

except that the degree bound excludes the top case of ε0µ
p−1
0 .
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In degree 2p−1 ofH∗(V (1)∧THH(`/p))we have generators 1∧ξ̄1τ̄0, τ0∧(σ τ̄0)
p−1,

τ0 ∧ ξ̄1, τ1 ∧ 1 and 1 ∧ y. These have coactions

ν(1 ∧ ξ̄1τ̄0) = 1⊗ 1 ∧ ξ̄1τ̄0 + τ̄0 ⊗ 1 ∧ ξ̄1 + ξ̄1 ⊗ 1 ∧ τ̄0 + ξ̄1τ̄0 ⊗ 1 ∧ 1,

ν(τ0 ∧ (σ τ̄0)
p−1) = 1⊗ τ0 ∧ (σ τ̄0)

p−1
+ τ0 ⊗ 1 ∧ (σ τ̄0)

p−1,

ν(τ0 ∧ ξ̄1) = 1⊗ τ0 ∧ ξ̄1 + τ0 ⊗ 1 ∧ ξ̄1 + ξ̄1 ⊗ τ0 ∧ 1+ ξ̄1τ0 ⊗ 1 ∧ 1,
ν(τ1 ∧ 1) = 1⊗ τ1 ∧ 1+ ξ1 ⊗ τ0 ∧ 1+ τ1 ⊗ 1 ∧ 1

and

ν(1 ∧ y) = 1⊗ 1 ∧ y + τ̄0 ⊗ 1 ∧ (σ τ̄0)
p−1
− τ̄0 ⊗ 1 ∧ ξ̄1 − τ̄1 ⊗ 1 ∧ 1.

Hence the sum

ε̄1 := 1 ∧ y + τ0 ∧ (σ τ̄0)
p−1
− τ0 ∧ ξ̄1 − τ1 ∧ 1 (4.4)

is A∗-comodule primitive. Its image under π∗ in H∗(V (1) ∧ THH(Z/p)) is

ε0µ
p−1
0 − ε1 = 1 ∧ τ̄0(σ τ̄0)

p−1
+ τ0 ∧ (σ τ̄0)

p−1
− 1 ∧ τ̄1 − τ0 ∧ ξ̄1 − τ1 ∧ 1.

Let
V (1)∗THH(`)/(λ1) = E(λ2)⊗ P(µ2)

be the quotient algebra of V (1)∗THH(`) by the ideal generated by λ1.

Proposition 4.2. The classes

1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 , ε̄1 ∈ H∗(V (1) ∧ THH(`/p))

defined in (4.2)–(4.4) have unique lifts with same names in V (1)∗THH(`/p). The graded
V (1)∗THH(`)-module V (1)∗THH(`/p) is a free V (1)∗THH(`)/(λ1)-module generated
by these 2p classes:

V (1)∗THH(`/p) = V (1)∗THH(`)/(λ1)⊗ Fp{1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 , ε̄1}.

The map π∗ to V (1)∗THH(Z/p) takes εδ0µ
i
0 in degree 0 ≤ δ + 2i ≤ 2p− 2 to εδ0µ

i
0, and

takes ε̄1 in degree 2p − 1 to ε0µ
p−1
0 − ε1.

Proof. Additively, this follows by another dimension count, and the description of π∗
follows from the definition of the classes in question. It remains to prove that the action
of V (1)∗THH(`) is as claimed.

The action of µi2 and λ2µ
i
2 in V (1)∗THH(`) on the generators

1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 , ε̄1

of V (1)∗THH(`/p) is nontrivial for all i ≥ 0, since the corresponding statement holds
for the images of these classes in H∗(V (1) ∧ THH(`)) and H∗(V (1) ∧ THH(`/p)). This
follows from Lemma 3.3 and the definition of these classes. It remains to show that λ1
acts trivially on V (1)∗THH(`/p). For degree reasons, multiplication by λ1 is zero on
all classes except possibly µi2 and λ2µ

i
2, for i ≥ 0. Because of the module structure, it

suffices to show that λ1 = λ1 ·1 = 0 in V (1)∗THH(`/p). This follows from the statement
that the image of λ1 in H∗(V (1) ∧ THH(`/p)) is equal to 1 ∧ σ ξ̄1 = 0, as implied by
Lemma 3.3. ut
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5. The Cp-Tate construction

For the remainder of this paper, let p be a prime with p ≥ 5. We briefly recall the termi-
nology on equivariant stable homotopy theory used below, and refer to [GM95], [HM97,
§1], [HM03, §4] and [AR02, §3] for more details. Let Cpn denote the cyclic group of
order pn, considered as a closed subgroup of the circle group S1, and let G = S1 or Cpn .
For each spectrum X with S1-action, let XhG = EG+ ∧G X and XhG = F(EG+, X)G

denote its homotopy orbit and homotopy fixed point spectra, as usual. We now write
XtG = [ẼG ∧ F(EG+, X)]G for the G-Tate construction on X, which was denoted
tG(X)

G in [GM95] and Ĥ(G,X) in [HM97], [HM03], [AR02].
We denote by F the Frobenius map XCpn → X

C
pn−1 given by the inclusion of

fixed-point spectra, and by V the Verschiebung map XCpn−1
→ XCpn given by trans-

fer. We shall also consider the homotopy Frobenius, Tate Frobenius and homotopy Ver-
schiebung maps F h : XhS

1
→ XhCpn , F h : XhCpn → X

hC
pn−1 , F t : XtS

1
→ XtCpn and

V h : XhCpn−1
→ XhCpn .

There are conditionally convergent G-homotopy fixed point and G-Tate spectral se-
quences in V (1)-homotopy for X, with

E2
s,t (G,X) = H

−s
gp (G;V (1)t (X))⇒ V (1)s+t (XhG)

and
Ê2
s,t (G,X) = Ĥ

−s
gp (G;V (1)t (X))⇒ V (1)s+t (XtG).

HereH ∗gp(G;V (1)∗(X)) denotes the group cohomology ofG and Ĥ ∗gp(G;V (1)∗(X)) the
Tate cohomology of G, with coefficients in V (1)∗(X). Notice that in our case, with X =
THH(B), the action ofG on V (1)∗(X) is trivial, since it is the restriction of an S1-action.
We writeH ∗gp(Cpn;Fp) = E(un)⊗P(t) and Ĥ ∗gp(Cpn;Fp) = E(un)⊗P(t±1)with un in
degree 1 and t in degree 2 (see for example [Ben98, Prop. 3.5.5] and [HM03, Lem. 4.2.1]).
So un, t and x ∈ V (1)t (X) have bidegree (−1, 0), (−2, 0) and (0, t) in either spectral
sequence, respectively. See [HM03, §4.3] for proofs of the multiplicative properties of
these spectral sequences. Similarly, we write H ∗gp(S

1
;Fp) = P(t) and Ĥ ∗gp(S

1
;Fp) =

P(t±1). We have morphisms of spectral sequences induced by the homotopy and Tate
Frobenii, which on the E2-terms map t to t and un to zero.

We are principally interested in the case whenX = THH(B), with the S1-action given
by the cyclic structure [Lod98, Def. 7.1.9], [HM03, §1.2]. It is a cyclotomic spectrum, in
the sense of [HM97, §1], leading to the commutative diagram

THH(B)hCpn
N // THH(B)Cpn R //

0n

��

THH(B)Cpn−1

0̂n
��

// 6THH(B)hCpn

THH(B)hCpn
Nh // THH(B)hCpn Rh // THH(B)tCpn // 6THH(B)hCpn

of horizontal cofibre sequences. We abbreviate Ê2(G,THH(B)) to Ê2(G,B), etc. When
B is a commutative S-algebra, this is a commutative algebra spectral sequence, and
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when B is an associative A-algebra, with A commutative, then Ê∗(G,B) is a module
spectral sequence over Ê∗(G,A). The map Rh corresponds to the inclusion E2(G,B)→

Ê2(G,B) from the second quadrant to the upper half-plane, for connective B.

Definition 5.1. We call a homomorphism of graded groups k-coconnected if it is an iso-
morphism in all dimensions greater than k and injective in dimension k.

In this section we compute V (1)∗THH(`/p)tCp by means of the Cp-Tate spectral
sequence in V (1)-homotopy for THH(`/p). In Propositions 5.7 and 5.8 we show that the
comparison map 0̂1 : V (1)∗THH(`/p)→ V (1)∗THH(`/p)tCp is (2p − 2)-coconnected
and can be identified with the algebraic localization homomorphism that inverts µ2.

First we recall the structure of the Cp-Tate spectral sequence for THH(Z/p), with
V (0)- and V (1)-coefficients. We have V (0)∗THH(Z/p) = E(ε0)⊗ P(µ0), and (with an
obvious notation for the case of V (0)-homotopy) the E2-terms are

Ê2(Cp,Z/p;V (0)) = E(u1)⊗ P(t
±1)⊗ E(ε0)⊗ P(µ0),

Ê2(Cp,Z/p) = E(u1)⊗ P(t
±1)⊗ E(ε0, ε1)⊗ P(µ0).

In each G-Tate spectral sequence we have a first differential

d2(x) = t · σx

(see e.g. [Rog98, §3.3]). We easily deduce σε0 = µ0 and σε1 = µ
p

0 from (4.1), so

Ê3(Cp,Z/p;V (0)) = E(u1)⊗ P(t
±1),

Ê3(Cp,Z/p) = E(u1)⊗ P(t
±1)⊗ E(ε0µ

p−1
0 − ε1).

Thus the V (0)-homotopy spectral sequence collapses at Ê3
= Ê∞. By naturality with re-

spect to the map i1 : V (0)→ V (1), all the classes on the horizontal axis of Ê3(Cp,Z/p)
are infinite cycles, so also the latter spectral sequence collapses at Ê3(Cp,Z/p).

We know from [HM03, Cor. 4.4.2] that the comparison map

0̂1 : V (0)∗THH(Z/p)→ V (0)∗THH(Z/p)tCp

takes εδ0µ
i
0 to (u1t

−1)δt−i for all 0 ≤ δ ≤ 1, i ≥ 0. In particular, the integral map
0̂1 : π∗THH(Z/p) → π∗THH(Z/p)tCp is (−2)-coconnected. From this we can deduce
the following behaviour of the comparison map 0̂1 in V (1)-homotopy.

Lemma 5.2. The map

0̂1 : V (1)∗THH(Z/p)→ V (1)∗THH(Z/p)tCp

takes the classes εδ0µ
i
0 from V (0)∗THH(Z/p), for 0 ≤ δ ≤ 1 and i ≥ 0, to classes

represented in Ê∞(Cp,Z/p) by (u1t
−1)δt−i (on the horizontal axis). Furthermore, it

takes the class ε0µ
p−1
0 − ε1 in degree 2p − 1 to a class represented by ε0µ

p−1
0 − ε1 (on

the vertical axis).
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Proof. The classes εδ0µ
i
0 are in the image from V (0)-homotopy, and we recalled above

that they are detected by (u1t
−1)δt−i in the V (0)-homotopy Cp-Tate spectral sequence

for THH(Z/p). By naturality along i1 : V (0) → V (1), they are detected by the same
(nonzero) classes in the V (1)-homotopy spectral sequence Ê∞(Cp,Z/p).

To find the representative for 0̂1(ε0µ
p−1
0 − ε1) in degree 2p − 1, we appeal to the

cyclotomic trace map from algebraic K-theory, or more precisely, to the commutative
diagram

K(B)

tr

''

tr1
��

tr

xx

THH(B) THH(B)Cp R //

01
��

Foo THH(B)

0̂1
��

THH(B)hCp Rh //

ff

THH(B)tCp

(5.1)

The Bökstedt trace map tr : K(B) → THH(B) admits a preferred lift trn through each
fixed point spectrum THH(B)Cpn , which homotopy equalizes the iterated restriction and
Frobenius maps Rn and F n to THH(B) (see [Dun04, §3]). In particular, the σ -operator
on V (1)∗THH(B) is zero on classes in the image of tr.

In the case B = HZ/p we know that K(Z/p)p ' HZp, so V (1)∗K(Z/p) = E(ε̄1),
where the v1-Bockstein of ε̄1 is −1. The Bökstedt trace image tr(ε̄1) ∈ V (1)∗THH(Z/p)
lies in Fp{ε1, ε0µ

p−1
0 }, has v1-Bockstein tr(−1) = −1 and suspends by σ to 0. Hence

tr(ε̄1) = ε0µ
p−1
0 − ε1.

As we recalled above, the map 0̂1 : π∗THH(Z/p) → π∗THH(Z/p)tCp is (−2)-cocon-
nected, so the corresponding map in V (1)-homotopy is at least (2p − 2)-coconnected.
Thus it takes ε0µ

p−1
0 − ε1 to a nonzero class in V (1)∗THH(Z/p)tCp , represented some-

where in total degree 2p − 1 of Ê∞(Cp,Z/p), in the lower right hand corner of the
diagram.

Going down the middle part of the diagram, we reach a class (01 ◦ tr1)(ε̄1), repre-
sented in total degree (2p − 1) in the left half-plane Cp-homotopy fixed point spectral
sequence E∞(Cp,Z/p). Its image under the edge homomorphism to V (1)∗THH(Z/p)
equals (F ◦ tr1)(ε̄1) = tr(ε̄1), hence (01 ◦ tr1)(ε̄1) is represented by ε0µ

p−1
0 − ε1 in

E∞0,2p−1(Cp,Z/p). Its image under Rh in the Cp-Tate spectral sequence is the generator

of Ê∞0,2p−1(Cp,Z/p) = Fp{ε0µ
p−1
0 − ε1}, hence that generator is the E∞-representative

of 0̂1(ε0µ
p−1
0 − ε1). ut

The (2p − 2)-connected map π : `/p → HZ/p induces a (2p − 1)-connected map
V (1)∗K(`/p)→ V (1)∗K(Z/p) = E(ε̄1), by [BM94, Prop. 10.9]. We can lift the alge-
braic K-theory class ε̄1 to `/p. This lift is not unique, but we fix one choice.
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Definition 5.3. We call
ε̄K1 ∈ V (1)2p−1K(`/p)

a chosen class that maps to the generator ε̄1 in V (1)2p−1K(Z/p) ∼= Z/p.

Lemma 5.4. The Bökstedt trace tr : V (1)∗K(`/p)→ V (1)∗THH(`/p) takes ε̄K1 to ε̄1.

Proof. In the commutative square

V (1)∗K(`/p)

π∗

��

tr // V (1)∗THH(`/p)

π∗

��

V (1)∗K(Z/p)
tr // V (1)∗THH(Z/p)

the trace image tr(ε̄K1 ) in V (1)∗THH(`/p)must map under π∗ to tr(ε̄1) = ε0µ
p−1
0 −ε1 in

V (1)∗THH(Z/p), which by Proposition 4.2 characterizes it as being equal to the class ε̄1.
Hence tr(ε̄K1 ) = ε̄1. ut

Next we turn to the Cp-Tate spectral sequence Ê∗(Cp, `/p) in V (1)-homotopy for
THH(`/p). Its E2-term is

Ê2(Cp, `/p) = E(u1)⊗P(t
±1)⊗Fp{1, ε0, µ0, ε0µ0, . . . , µ

p−1
0 , ε̄1}⊗E(λ2)⊗P(µ2).

We have d2(x) = t · σx, where

σ(εδ0µ
i−1
0 ) =

{
µi0 for δ = 1, 0 < i < p,
0 otherwise

is readily deduced from (4.1), and σ(ε̄1) = 0 since ε̄1 is in the image of tr. Thus

Ê3(Cp, `/p) = E(u1)⊗ P(t
±1)⊗ E(ε̄1)⊗ E(λ2)⊗ P(tµ2). (5.2)

We prefer to use tµ2 rather than µ2 as a generator, since it represents multiplication by
v2 (up to a unit factor in Fp) in all module spectral sequences over E∗(S1, `), by [AR02,
Prop. 4.8].

To proceed, we shall use that Ê∗(Cp, `/p) is a module over the spectral sequence for
THH(`). We therefore recall the structure of the latter spectral sequence, from [AR02,
Th. 5.5]. It begins

Ê2(Cp, `) = E(u1)⊗ P(t
±1)⊗ E(λ1, λ2)⊗ P(µ2).

The classes λ1, λ2 and tµ2 are infinite cycles, and the differentials

d2p(t1−p)
.
= tλ1, d2p2

(tp−p
2
)
.
= tpλ2, d2p2

+1(u1t
−p2

)
.
= tµ2

leave the terms

Ê2p+1(Cp, `) = E(u1, λ1, λ2)⊗ P(t
±p, tµ2),
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Ê2p2
+1(Cp, `) = E(u1, λ1, λ2)⊗ P(t

±p2
, tµ2),

Ê2p2
+2(Cp, `) = E(λ1, λ2)⊗ P(t

±p2
),

with Ê2p2
+2
= Ê∞, converging to V (1)∗THH(`)tCp . The comparison map 0̂1 takes

λ1, λ2, µ2 to λ1, λ2, t−p
2

(up to a unit factor in Fp), respectively, inducing the algebraic
localization map and identification

0̂1 : V (1)∗THH(`)→ V (1)∗THH(`)[µ−1
2 ] ∼= V (1)∗THH(`)tCp .

Lemma 5.5. In Ê∗(Cp, `/p), the class u1t
−p supports the nonzero differential

d2p2
(u1t

−p)
.
= u1t

p2
−pλ2,

and does not survive to the E∞-term.

Proof. In Ê∗(Cp, `), there is such a differential. By naturality along i : `→ `/p, it fol-
lows that there is also such a differential in Ê∗(Cp, `/p). It remains to argue that the
target class is nonzero at the E2p2

-term. Considering the E3-term in (5.2), the only pos-
sible source of a previous differential hitting u1t

p2
−pλ2 is ε̄1, supporting a d2p2

−2p+1-
differential. But ε̄1 is in an even column and u1t

p2
−pλ2 is in an odd column. By natu-

rality with respect to the Tate Frobenius map F t : THH(`/p)tS
1
→ THH(`/p)tCp , any

such differential from an even to an odd column must be zero. Indeed, the S1-Tate spec-
tral sequence has E2-term given by P(t±1) ⊗ V (1)∗THH(`/p), and F t induces the in-
jective homomorphism that takes Ê2(S1, `/p) isomorphically to the even columns of
Ê2(Cp, `/p). Since Ê∗(S1, `/p) is concentrated in even columns, all differentials of odd
length are zero. By naturality, classes of Êr(Cp, `/p) that lie in the image of Êr(F t ) can-
not support a differential of odd length (cf. [AR02, Lem. 5.2]). In the present situation,
the d2-differential of Ê∗(Cp, `/p) leading to (5.2) is also nonzero in Ê∗(S1, `/p), so that

Ê3(S1, `/p) = P(t±1)⊗ E(ε̄1)⊗ E(λ2)⊗ P(tµ2).

By inspection, if the class ε̄1 ∈ Ê
2(Cp, `/p) survives to Ê2p2

−2p+1(Cp, `/p), then it
will lie in the image of Ê2p2

−2p+1(F t ). ut

To determine the map 0̂1 we use naturality with respect to the map π : `/p→ HZ/p.

Lemma 5.6. The classes 1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 and ε̄1 in V (1)∗THH(`/p) map un-

der 0̂1 to classes in V (1)∗THH(`/p)tCp that are represented in Ê∞(Cp, `/p) by the
permanent cycles (u1t

−1)δt−i (on the horizontal axis) in degrees ≤ 2p − 2, and by the
permanent cycle ε̄1 (on the vertical axis) in degree 2p − 1.

Proof. In the commutative square

V (1)∗THH(`/p)
0̂1 //

π∗

��

V (1)∗THH(`/p)tCp

π∗

��

V (1)∗THH(Z/p)
0̂1 // V (1)∗THH(Z/p)tCp
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the classes εδ0µ
i
0 in the upper left corner map to classes in the lower right corner that are

represented by (u1t
−1)δt−i in degrees ≤ 2p − 2, and ε̄1 maps to ε0µ

p−1
0 − ε1 in degree

2p − 1. This follows by combining Proposition 4.2 and Lemma 5.2.
The first 2p − 1 of these are represented in maximal filtration (on the horizontal

axis), so their images in the upper right corner must be represented by permanent cycles
(u1t

−1)δt−i in the Tate spectral sequence Ê∞(Cp, `/p).
The image of the last class, ε̄1, in the upper right corner could either be represented

by ε̄1 in bidegree (0, 2p− 1) or by u1t
−p in bidegree (2p− 1, 0). However, the last class

supports a differential d2p2
(u1t

−p)
.
= u1t

p2
−pλ2, by Lemma 5.5 above. This only leaves

the other possibility, that 0̂1(ε̄1) is represented by ε̄1 in Ê∞(Cp, `/p). ut

We proceed to determine the differential structure in Ê∗(Cp, `/p), making use of the
permanent cycles identified above.

Proposition 5.7. The Cp-Tate spectral sequence in V (1)-homotopy for THH(`/p) has

Ê3(Cp, `/p) = E(u1, ε̄1, λ2)⊗ P(t
±1, tµ2).

It has differentials generated by

d2p2
−2p+2(tp−p

2
· t−i ε̄1)

.
= tµ2 · t

−i

for 0 < i < p, d2p2
(tp−p

2
)
.
= tpλ2 and d2p2

+1(u1t
−p2

)
.
= tµ2. The subsequent terms

are
Ê2p2

−2p+3(Cp, `/p) = E(u1, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p)

⊕ E(u1, ε̄1, λ2)⊗ P(t
±p, tµ2),

Ê2p2
+1(Cp, `/p) = E(u1, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p

2
)

⊕ E(u1, ε̄1, λ2)⊗ P(t
±p2

, tµ2),

Ê2p2
+2(Cp, `/p) = E(u1, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p

2
)

⊕ E(ε̄1, λ2)⊗ P(t
±p2

).

The last term can be rewritten as

Ê∞(Cp, `/p) =
(
E(u1)⊗ Fp{t−i | 0 < i < p} ⊕ E(ε̄1)

)
⊗ E(λ2)⊗ P(t

±p2
).

Proof. We have already identified the E2- and E3-terms above. The E3-term (5.2) is
generated over Ê3(Cp, `) by an Fp-basis for E(ε̄1), so the next possible differential is
induced by d2p(t1−p)

.
= tλ1. But multiplication by λ1 is trivial in V (1)∗THH(`/p),

by Proposition 4.2, so Ê3(Cp, `/p) = Ê2p+1(Cp, `/p). This term is generated over
Ê2p+1(Cp, `) by Pp(t−1)⊗E(ε̄1). Here 1, t−1, . . . , t1−p and ε̄1 are permanent cycles, by
Lemma 5.6. Any dr -differential before d2p2

must therefore originate on a class t−i ε̄1 for
0 < i < p, and be of even length r , since these classes lie in even columns. For bidegree
reasons, the first possibility is r = 2p2

−2p+2, so Ê3(Cp, `/p) = Ê
2p2
−2p+2(Cp, `/p).
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Multiplication by v2 acts trivially on V (1)∗THH(`) and V (1)∗THH(`)tCp for degree
reasons, and therefore also on V (1)∗THH(`/p) and V (1)∗THH(`/p)tCp by the module
structure. The class v2 maps to tµ2 in the S1-Tate spectral sequence for `, as recalled
above, so multiplication by v2 is represented by multiplication by tµ2 in the Cp-Tate
spectral sequence for `/p. Applied to the permanent cycles (u1t

−1)δt−i in degrees ≤
2p − 2, this implies that the products

tµ2 · (u1t
−1)δt−i

must be infinite cycles representing zero, i.e., they must be hit by differentials. In the
cases δ = 1, 0 ≤ i ≤ p − 2, these classes in odd columns cannot be hit by differentials
of odd length, such as d2p2

+1, so the only possibility is

d2p2
−2p+2(tp−p

2
· (u1t

−1)t−i ε̄1)
.
= tµ2 · (u1t

−1)t−i

for 0 ≤ i ≤ p− 2. By the module structure (consider multiplication by u1) it follows that

d2p2
−2p+2(tp−p

2
· t−i ε̄1)

.
= tµ2 · t

−i

for 0 < i < p. Hence we can compute from (5.2) that

Ê2p2
−2p+3(Cp, `/p) = E(u1)⊗ P(t

±p)⊗ Fp{t−i | 0 < i < p} ⊗ E(λ2)

⊕ E(u1)⊗ P(t
±p)⊗ E(ε̄1)⊗ E(λ2)⊗ P(tµ2).

This is generated over Ê2p+1(Cp, `) by the permanent cycles 1, t−1, . . . , t1−p and ε̄1, so
the next differential is induced by d2p2

(tp−p
2
)
.
= tpλ2. This leaves

Ê2p2
+1(Cp, `/p) = E(u1)⊗ P(t

±p2
)⊗ Fp{t−i | 0 < i < p} ⊗ E(λ2)

⊕ E(u1)⊗ P(t
±p2

)⊗ E(ε̄1)⊗ E(λ2)⊗ P(tµ2).

Finally, d2p2
+1(u1t

−p2
)
.
= tµ2 applies, and leaves

Ê2p2
+2(Cp, `/p) = E(u1)⊗ P(t

±p2
)⊗ Fp{t−i | 0 < i < p} ⊗ E(λ2)

⊕ P(t±p
2
)⊗ E(ε̄1)⊗ E(λ2).

For bidegree reasons, Ê2p2
+2
= Ê∞. ut

Proposition 5.8. The comparison map 0̂1 takes the classes

εδ0µ
i
0, ε̄1, λ2 and µ2 in V (1)∗THH(`/p)

to classes in V (1)∗THH(`/p)tCp represented by

(u1t
−1)δt−i , ε̄1, λ2 and t−p

2
in Ê∞(Cp, `/p),



Algebraic K-theory of the first Morava K-theory 1061

up to a unit factor in Fp, respectively. Thus

V (1)∗THH(`/p)tCp ∼= Fp{1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 , ε̄1} ⊗ E(λ2)⊗ P(µ

±1
2 )

and 0̂1 induces an identification V (1)∗THH(`/p)[µ−1
2 ] ∼= V (1)∗THH(`/p)tCp . In par-

ticular, 0̂1 factors as the algebraic localization map and identification

0̂1 : V (1)∗THH(`/p)→ V (1)∗THH(`/p)[µ−1
2 ] ∼= V (1)∗THH(`/p)tCp ,

and is (2p − 2)-coconnected.

Proof. The image under 0̂1 of the classes 1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 and ε̄1 was given

in Lemma 5.6, and the action on the classes λ2 and µ2 is given in the proof of [AR02,
Th. 5.5]. The structure of V (1)∗THH(`/p)tCp is then immediate from the E∞-term in
Proposition 5.7. The top class not in the image of 0̂1 is ε̄1λ2µ

−1
2 , in degree 2p − 2. ut

Recall that

T F(B;p) = holim
n,F

THH(B)Cpn , T R(B;p) = holim
n,R

THH(B)Cpn

are defined as the homotopy limits over the Frobenius and the restriction maps

F,R : THH(B)Cpn → THH(B)Cpn−1 ,

respectively.

Corollary 5.9. The comparison maps

0n : THH(`/p)Cpn → THH(`/p)hCpn ,

0̂n : THH(`/p)Cpn−1
→ THH(`/p)tCpn

for n ≥ 1, and
0 : T F(`/p;p)→ THH(`/p)hS

1
,

0̂ : T F(`/p;p)→ THH(`/p)tS
1

all induce (2p − 2)-coconnected homomorphisms on V (1)-homotopy.

Proof. This follows from a theorem of Tsalidis [Tsa98, Th. 2.4] and Proposition 5.8
above, just as in [AR02, Th. 5.7]. See also [BBLNR, Ex. 10.2]. ut

6. Higher fixed points

Let n ≥ 1. Write vp(i) for the p-adic valuation of i. Define a numerical function ρ(−) by

ρ(2k − 1) = (p2k+1
+ 1)/(p + 1) = p2k

− p2k−1
+ · · · − p + 1,

ρ(2k) = (p2k+2
− p2)/(p2

− 1) = p2k
+ p2k−2

+ · · · + p2,
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for k ≥ 0, so ρ(−1) = 1 and ρ(0) = 0. For even arguments, ρ(2k) = r(2k) as defined in
[AR02, Def. 2.5].

In all of the following spectral sequences we know that λ2, tµ2 and ε̄1 are infinite
cycles. For λ2 and ε̄1 this follows from the Cpn -fixed point analogue of diagram (5.1),
by [AR02, Prop. 2.8] and Lemma 5.4. For tµ2 it follows from [AR02, Prop. 4.8], by
naturality.

Theorem 6.1. The Cpn -Tate spectral sequence in V (1)-homotopy for THH(`/p) begins

Ê2(Cpn , `/p) = E(un, λ2)⊗ Fp{1, ε0, µ0, ε0µ0, . . . , µ
p−1
0 , ε̄1} ⊗ P(t

±1, µ2)

and converges to V (1)∗THH(`/p)tCpn . It is a module spectral sequence over the algebra
spectral sequence Ê∗(Cpn , `) converging to V (1)∗THH(`)tCpn .

There is an initial d2-differential generated by

d2(ε0µ
i−1
0 ) = tµi0

for 0 < i < p. Next, there are 2n families of even length differentials generated by

d2ρ(2k−1)(tp
2k−1
−p2k

+i
· ε̄1)

.
= (tµ2)

ρ(2k−3)
· t i

for vp(i) = 2k − 2, for each k = 1, . . . , n, and

d2ρ(2k)(tp
2k−1
−p2k

)
.
= λ2 · t

p2k−1
· (tµ2)

ρ(2k−2)

for each k = 1, . . . , n. Finally, there is a differential of odd length generated by

d2ρ(2n)+1(un · t
−p2n

)
.
= (tµ2)

ρ(2n−2)+1.

We shall prove Theorem 6.1 by induction on n. The base case n = 1 was covered by
Proposition 5.7. We can therefore assume that Theorem 6.1 holds for some fixed n ≥ 1,
and must prove the corresponding statement for n + 1. First we make the following de-
duction.

Corollary 6.2. The initial differential in the Cpn -Tate spectral sequence in V (1)-homo-
topy for THH(`/p) leaves

Ê3(Cpn , `/p) = E(un, ε̄1, λ2)⊗ P(t
±1, tµ2).

The next 2n families of differentials leave the intermediate terms

Ê2ρ(1)+1(Cpn , `/p) = E(un, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p)

⊕ E(un, ε̄1, λ2)⊗ P(t
±p, tµ2)

(for m = 1),
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Ê2ρ(2m−1)+1(Cpn , `/p) = E(un, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p
2
)

⊕

m⊕
k=2

E(un, λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕

m−1⊕
k=2

E(un, ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(t
±p2m−1

, tµ2)

for m = 2, . . . , n, and

Ê2ρ(2m)+1(Cpn , `/p) = E(un, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p
2
)

⊕

m⊕
k=2

E(un, λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕

m⊕
k=2

E(un, ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(t
±p2m

, tµ2)

for m = 1, . . . , n. The final differential leaves the E2ρ(2n)+2
= E∞-term, equal to

Ê∞(Cpn , `/p) = E(un, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p
2
)

⊕

n⊕
k=2

E(un, λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕

n⊕
k=2

E(un, ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(ε̄1, λ2)⊗ P(t
±p2n

)⊗ Pρ(2n−2)+1(tµ2).

Proof. The statements about theE3-,E2ρ(1)+1- andE2ρ(2)+1-terms are clear from Propo-
sition 5.7. For each m = 2, . . . , n we proceed by a secondary induction. The differential

d2ρ(2m−1)(tp
2m−1
−p2m

+i
· ε̄1)

.
= (tµ2)

ρ(2m−3)
· t i

for vp(i) = 2m− 2 is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(t
±p2m−2

, tµ2)

of the E2ρ(2m−2)+1
= E2ρ(2m−1)-term, with homology

E(un, λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2m− 2} ⊗ Pρ(2m−3)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(t
±p2m−1

, tµ2).
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This gives the stated E2ρ(2m−1)+1-term. Similarly, the differential

d2ρ(2m)(tp
2m−1
−p2m

)
.
= λ2 · t

p2m−1
· (tµ2)

ρ(2m−2)

is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(t
±p2m−1

, tµ2)

of the E2ρ(2m−1)+1
= E2ρ(2m)-term, with homology

E(un, ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2m− 1} ⊗ Pρ(2m−2)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(t
±p2m

, tµ2).

This gives the stated E2ρ(2m)+1-term. The final differential

d2ρ(2n)+1(un · t
−p2n

)
.
= (tµ2)

ρ(2n−2)+1

is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(t
±p2n

, tµ2)

of the E2ρ(2n)+1-term, with homology

E(ε̄1, λ2)⊗ P(t
±p2n

)⊗ Pρ(2n−2)+1(tµ2).

This gives the stated E2ρ(2n)+2-term. At this stage there is no room for any further differ-
entials, since the spectral sequence is concentrated in a narrower horizontal band than the
vertical height of the following differentials. ut

Next we compare the Cpn -Tate spectral sequence with the Cpn -homotopy fixed point
spectral sequence obtained by restricting the E2-term to the second quadrant (s ≤ 0,
t ≥ 0). It is algebraically easier to handle the latter after inverting µ2, which can be
interpreted as comparing THH(`/p) with its Cp-Tate construction.

In general, there is a commutative diagram

THH(B)Cpn R //

0n

��

THH(B)Cpn−1 0n−1
//

0̂n
��

THH(B)hCpn−1

0̂
hC
pn−1

1
��

THH(B)hCpn Rh // THH(B)tCpn
Gn−1

// (ρ∗pTHH(B)tCp )hCpn−1

(6.1)

Here ρ∗pTHH(B)tCp is a notation for the S1-spectrum obtained from the S1/Cp-spectrum
THH(B)tCp via the p-th root isomorphism ρp : S1

→ S1/Cp, and Gn−1 is the compari-
son map from theCpn−1 -fixed points to theCpn−1 -homotopy fixed points of ρ∗pTHH(B)tCp ,
in view of the identification

(ρ∗pTHH(B)tCp )Cpn−1
= THH(B)tCpn .
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We are of course considering the case B = `/p. In V (1)-homotopy all four maps
with labels containing 0 are (2p − 2)-coconnected, by Corollary 5.9, so Gn−1 is at least
(2p − 1)-coconnected. (We shall see in Lemma 6.8 that V (1)∗Gn−1 is an isomorphism
in all degrees.) By Proposition 5.8 the map 0̂1 precisely inverts µ2, so the E2-term of
the Cpn -homotopy fixed point spectral sequence in V (1)-homotopy for THH(`/p)tCp
is obtained by inverting µ2 in E2(Cpn , `/p). We denote this spectral sequence by
µ−1

2 E∗(Cpn , `/p), even though in later terms only a power of µ2 is present.

Theorem 6.3. The Cpn -homotopy fixed point spectral sequence µ−1
2 E∗(Cpn , `/p) in

V (1)-homotopy for THH(`/p)tCp begins

µ−1
2 E2(Cpn , `/p) = E(un, λ2)⊗ Fp{1, ε0, µ0, ε0µ0, . . . , µ

p−1
0 , ε̄1} ⊗ P(t, µ

±1
2 )

and converges to V (1)∗(ρ∗pTHH(`/p)tCp )hCpn , which receives a (2p − 2)-coconnected
map (0̂1)

hCpn from V (1)∗THH(`/p)hCpn . There is an initial d2-differential generated by

d2(ε0µ
i−1
0 ) = tµi0

for 0 < i < p. Next, there are 2n families of even length differentials generated by

d2ρ(2k−1)(µ
p2k
−p2k−1

+j

2 · ε̄1)
.
= (tµ2)

ρ(2k−1)
· µ

j

2

for vp(j) = 2k − 2, for each k = 1, . . . , n, and

d2ρ(2k)(µ
p2k
−p2k−1

2 )
.
= λ2 · µ

−p2k−1

2 · (tµ2)
ρ(2k)

for each k = 1, . . . , n. Finally, there is a differential of odd length generated by

d2ρ(2n)+1(un · µ
p2n

2 )
.
= (tµ2)

ρ(2n)+1.

Proof. The differential pattern follows from Theorem 6.1 by naturality with respect to
the maps of spectral sequences

µ−1
2 E∗(Cpn , `/p)

0̂
hCpn

1
←−−− E∗(Cpn , `/p)

Rh

−→ Ê∗(Cpn , `/p)

induced by 0̂
hCpn

1 and Rh. The first inverts µ2 and the second inverts t , at the level of
E2-terms. We are also using that tµ2, the image of v2, multiplies as an infinite cycle in
all of these spectral sequences. ut

Corollary 6.4. The initial differential in the Cpn -homotopy fixed point spectral sequence
in V (1)-homotopy for THH(`/p)tCp leaves

µ−1
2 E3(Cpn , `/p) = E(un, λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ±1

2 )

⊕ E(un, ε̄1, λ2)⊗ P(µ
±1
2 , tµ2).
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The next 2n families of differentials leave the intermediate terms

µ−1
2 E2ρ(2m−1)+1(Cpn , `/p) = E(un, λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ±1

2 )

⊕

m⊕
k=1

E(un, λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕

m−1⊕
k=1

E(un, ε̄1)⊗ Fp{λ2µ
j

2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(µ
±p2m−1

2 , tµ2)

and

µ−1
2 E2ρ(2m)+1(Cpn , `/p) = E(un, λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ±1

2 )

⊕

m⊕
k=1

E(un, λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕

m⊕
k=1

E(un, ε̄1)⊗ Fp{λ2µ
j

2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(µ
±p2m

2 , tµ2)

for m = 1, . . . , n. The final differential leaves the E2ρ(2n)+2
= E∞-term, equal to

µ−1
2 E∞(Cpn , `/p) = E(un, λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ±1

2 )

⊕

n⊕
k=1

E(un, λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕

n⊕
k=1

E(un, ε̄1)⊗ Fp{λ2µ
j

2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(ε̄1, λ2)⊗ P(µ
±p2n

2 )⊗ Pρ(2n)+1(tµ2).

Proof. The computation of the E3-term from the E2-term is straightforward. The rest of
the proof goes by a secondary induction on m = 1, . . . , n, very much like the proof of
Corollary 6.2. The differential

d2ρ(2m−1)(µ
p2m
−p2m−1

+j

2 · ε̄1)
.
= (tµ2)

ρ(2m−1)
· µ

j

2

for vp(j) = 2m− 2 is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(µ
±p2m−2

2 , tµ2)

of the E3
= E2ρ(1)-term (for m = 1), resp. the E2ρ(2m−2)+1

= E2ρ(2m−1)-term (for
m = 2, . . . , n). Its homology is
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E(un, λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2m− 2} ⊗ Pρ(2m−1)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(µ
±p2m−1

2 , tµ2),

which gives the stated E2ρ(2m−1)+1-term. The differential

d2ρ(2m)(µ
p2m
−p2m−1

2 )
.
= λ2 · µ

−p2m−1

2 · (tµ2)
ρ(2m)

is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(µ
±p2m−1

2 , tµ2)

of the E2ρ(2m−1)+1
= E2ρ(2m)-term, leaving

E(un, ε̄1)⊗ Fp{λ2µ
j

2 | j ∈ Z, vp(j) = 2m− 1} ⊗ Pρ(2m)(tµ2)

⊕ E(un, ε̄1, λ2)⊗ P(µ
±p2m

2 , tµ2).

This gives the stated E2ρ(2m)+1-term. The final differential

d2ρ(2n)+1(un · µ
p2n

2 )
.
= (tµ2)

ρ(2n)+1

is nontrivial only on the summand

E(un, ε̄1, λ2)⊗ P(µ
±p2n

2 , tµ2)

of the E2ρ(2n)+1-term, with homology

E(ε̄1, λ2)⊗ P(µ
±p2n

2 )⊗ Pρ(2n)+1(tµ2).

This gives the stated E2ρ(2n)+2-term. There is no room for any further differentials, since
the spectral sequence is concentrated in a narrower vertical band than the horizontal width
of the following differentials, so E2ρ(2n)+2

= E∞. ut

Proof of Theorem 6.1. To make the inductive step to Cpn+1 , we use that the first dr -
differential of odd length in Ê∗(Cpn , `/p) occurs for r = r0 = 2ρ(2n) + 1. It follows
from [AR02, Lem. 5.2] that the terms Êr(Cpn , `/p) and Êr(Cpn+1 , `/p) are isomorphic
for r ≤ 2ρ(2n) + 1, via the Frobenius map (taking t i to t i) in even columns and the
Verschiebung map (taking unt i to un+1t

i) in odd columns. Furthermore, the differential
d2ρ(2n)+1 is zero in the latter spectral sequence. This proves the part of Theorem 6.1 for
n+ 1 that concerns the differentials leading up to the term

Ê2ρ(2n)+2(Cpn+1 , `/p) = E(un+1, λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p
2
)

⊕

n⊕
k=2

E(un+1, λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕

n⊕
k=2

E(un+1, ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(un+1, ε̄1, λ2)⊗ P(t
±p2n

, tµ2). (6.2)
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Next we use the following commutative diagram, where we abbreviate THH(B) to
T (B) for typographical reasons:

(ρ∗pT (B)
tCp )hCpn

F

��

T (B)hCpn
0̂
hCpn

1oo

F

��

T (B)Cpn
0noo

0̂n+1
//

F

��

T (B)
tC
pn+1

F

��

ρ∗pT (B)
tCp T (B)

0̂1oo T (B)
0̂1 // ρ∗pT (B)

tCp

(6.3)

The horizontal maps all induce (2p − 2)-coconnected maps in V (1)-homotopy for
B = `/p. Each F is a Frobenius map, forgetting invariance under a Cpn -action. Thus the
map 0̂n+1 to the right induces an isomorphism of E(λ2)⊗ P(v2)-modules in all degrees
∗ > 2p−2 from V (1)∗THH(`/p)Cpn , implicitly identified to the left with the abutment of
µ−1

2 E∗(Cpn , `/p), to V (1)∗THH(`/p)tCpn+1 , which is the abutment of Ê∗(Cpn+1 , `/p).
The diagram above ensures that the isomorphism induced by 0̂n+1 is compatible with the
one induced by 0̂1. By Proposition 5.8 it takes ε̄1, λ2 and µ2 to ε̄1, λ2 and t−p

2
up to a

unit factor in Fp, respectively, and similarly for monomials in these classes.
We focus on the summand

E(un, λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2n− 2} ⊗ Pρ(2n−1)(tµ2)

inµ−1
2 E∞(Cpn , `/p), abutting to V (1)∗THH(`/p)Cpn in degrees> 2p−2. In the P(v2)-

module structure on the abutment, each class µj2 with vp(j) = 2n − 2, j > 0, generates
a copy of Pρ(2n−1)(v2), since there are no permanent cycles in the same total degree as
y = (tµ2)

ρ(2n−1)
· µ

j

2 that have lower (= more negative) homotopy fixed point filtration.
See Lemma 6.5 below for the elementary verification. The P(v2)-module isomorphism
induced by 0̂n+1 must take this to a copy of Pρ(2n−1)(v2) in V (1)∗THH(`/p)tCpn+1 ,
generated by t−p

2j .
Writing i = −p2j , we deduce that for vp(i) = 2n, i < 0, the infinite cycle z =

(tµ2)
ρ(2n−1)

· t i must represent zero in the abutment, and must therefore be hit by a
differential z = dr(x) in the Cpn+1 -Tate spectral sequence. Here r ≥ 2ρ(2n)+ 2.

Since z generates a free copy of P(tµ2) in the E2ρ(2n)+2-term displayed in (6.2), and
dr is P(tµ2)-linear, the class x cannot be annihilated by any power of tµ2. This means
that x must be contained in the summand

E(un+1, ε̄1, λ2)⊗ P(t
±p2n

, tµ2)

of Ê2ρ(2n)+2(Cpn+1 , `/p). By an elementary check of bidegrees (see Lemma 6.6 below),
the only possibility is that x has vertical degree 2p − 1, so that we have differentials

d2ρ(2n+1)(tp
2n+1
−p2n+2

+i
· ε̄1)

.
= (tµ2)

ρ(2n−1)
· t i
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for all i < 0 with vp(i) = 2n. The cases i > 0 follow by the module structure over the
Cpn+1 -Tate spectral sequence for `. The remaining two differentials,

d2ρ(2n+2)(tp
2n+1
−p2n+2

)
.
= λ2 · t

p2n+1
· (tµ2)

ρ(2n)

and
d2ρ(2n+2)+1(un+1 · t

−p2n+2
)
.
= (tµ2)

ρ(2n)+1,

are also present in the Cpn+1 -Tate spectral sequence for ` (see [AR02, Th 6.1]), hence
follow in the present case by the module structure. With this we have established the
complete differential pattern asserted by Theorem 6.1. ut

Lemma 6.5. For j ∈ Z with vp(j) = 2n − 2, where n ≥ 1, there are no classes in
µ−1

2 E∞(Cpn , `/p) in the same total degree as y = (tµ2)
ρ(2n−1)

· µ
j

2 that have lower
homotopy fixed point filtration.

Proof. The total degree of y is 2(p2n+2
− p2n+1

+ p − 1)+ 2p2j ≡ 2p − 2 mod 2p2n,
which is even.

Looking at the formula for µ−1
2 E∞(Cpn , `/p) in Corollary 6.4, the classes of lower

filtration than y all lie in the terms

E(un, ε̄1)⊗ Fp{λ2µ
i
2 | j ∈ Z, vp(i) = 2n− 1} ⊗ Pρ(2n)(tµ2)

and
E(ε̄1, λ2)⊗ P(µ

±p2n

2 )⊗ Pρ(2n)+1(tµ2).

Those in even total degree and of lower filtration than y are

unλ2 · µ
i
2(tµ2)

e, ε̄1λ2 · µ
i
2(tµ2)

e

with vp(i) = 2n− 1, ρ(2n− 1) < e < ρ(2n), and

µi2(tµ2)
e, ε̄1λ2 · µ

i
2(tµ2)

e

with vp(i) ≥ 2n, ρ(2n− 1) < e ≤ ρ(2n).
The total degree of unλ2 ·µ

i
2(tµ2)

e for vp(i) = 2n− 1 is (−1)+ (2p2
− 1)+ 2p2i+

(2p2
− 2)e ≡ (2p2

− 2)(e + 1) mod 2p2n. For this to agree with the total degree of y,
we must have 2p − 2 ≡ (2p2

− 2)(e+ 1) mod 2p2n, so e+ 1 ≡ 1/(1+ p) modp2n and
e ≡ ρ(2n− 1)− 1 modp2n. There is no such e with ρ(2n− 1) < e < ρ(2n).

The total degree of ε̄1λ2 · µ
i
2(tµ2)

e for vp(i) = 2n − 1 is (2p − 1) + (2p2
− 1) +

2p2i + (2p2
− 2)e ≡ 2p+ (2p2

− 2)(e+ 1) mod 2p2n. To agree with that of y, we must
have 2p − 2 ≡ 2p + (2p2

− 2)(e+ 1) mod 2p2n, so (e+ 1) ≡ 1/(1− p2) modp2n and
e ≡ ρ(2n) modp2n. There is no such e with ρ(2n− 1) < e < ρ(2n).

The total degree of µi2(tµ2)
e for vp(i) ≥ 2n is 2p2i + (2p2

− 2)e ≡ (2p2
− 2)e

mod 2p2n. To agree with that of y, we must have (2p − 2) ≡ (2p2
− 2)e mod 2p2n, so

e ≡ 1/(1+ p) ≡ ρ(2n− 1) modp2n. There is no such e with ρ(2n− 1) < e ≤ ρ(2n).
The total degree of ε̄1λ2 ·µ

i
2(tµ2)

e for vp(i) ≥ 2n is (2p− 1)+ (2p2
− 1)+ 2p2i +

(2p2
− 2)e. To agree modulo 2p2n with that of y, we must have e ≡ ρ(2n) modp2n. The
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only such e with ρ(2n− 1) < e ≤ ρ(2n) is e = ρ(2n). But in that case, the total degree
of ε̄1λ2 · µ

i
2(tµ2)

e is 2p + 2p2i + (2p2
− 2)(ρ(2n) + 1) = 2(p2n+2

+ p − 1) + 2p2i.
To be equal to that of y, we must have 2p2i + 2p2n+1

= 2p2j , which is impossible for
vp(i) ≥ 2n and vp(j) = 2n− 2. ut

Lemma 6.6. For vp(i) = 2n, n ≥ 1 and z = (tµ2)
ρ(2n−1)

· t i , the only class in

E(un+1, ε̄1, λ2)⊗ P(t
±p2n

, tµ2)

that can support a nonzero differential dr(x) = z for r ≥ 2ρ(2n)+ 2 is (a unit times)

x = tp
2n+1
−p2n+2

+i
· ε̄1.

Proof. The class z has total degree (2p2
− 2)ρ(2n − 1) − 2i = 2p2n+2

− 2p2n+1
+

2p − 2 − 2i ≡ 2p − 2 mod 2p2n, which is even, and vertical degree 2p2ρ(2n − 1).
Hence x has odd total degree, and vertical degree at most 2p2ρ(2n− 1)− 2ρ(2n)− 1 =
2p2n+2

− 2p2n+1
− · · · − 2p3

− 1. This leaves the possibilities

un+1 · t
j (tµ2)

e, ε̄1 · t
j (tµ2)

e, λ2 · t
j (tµ2)

e

with vp(j) ≥ 2n and 0 ≤ e < p2n
−p2n−1

− · · · −p = ρ(2n− 1)− ρ(2n− 2)− 1, and

un+1ε̄1λ2 · t
j (tµ2)

e

with vp(j) ≥ 2n and 0 ≤ e < p2n
−p2n−1

− · · · −p− 1 = ρ(2n− 1)− ρ(2n− 2)− 2.
The total degree of x must be one more than the total degree of z, hence is congruent

to 2p − 1 modulo 2p2n.
The total degree of un+1 · t

j (tµ2)
e is −1 − 2j + (2p2

− 2)e ≡ −1 + (2p2
− 2)e

mod 2p2n. To have 2p−1 ≡ −1+(2p2
−2)emod 2p2n we must have e ≡ −p/(1−p2) ≡

p2n
− p2n−1

− · · · − p modp2n, which does not happen for e in the allowable range.
The total degree of λ2 ·t

j (tµ2)
e is (2p2

−1)−2j+(2p2
−2)e ≡ (2p2

−1)+(2p2
−2)e

mod 2p2n. To have 2p − 1 ≡ (2p2
− 1) + (2p2

− 2)e mod 2p2n we must have e ≡
−p/(1+ p) ≡ ρ(2n− 1)− 1 modp2n, which does not happen.

The total degree of un+1ε̄1λ2·t
j (tµ2)

e is−1+(2p−1)+(2p2
−1)−2j+(2p2

−2)e ≡
(2p− 1)+ (2p2

− 2)(e+ 1) mod 2p2n. To have 2p− 1 ≡ (2p− 1)+ (2p2
− 2)(e+ 1)

mod 2p2n we must have e + 1 ≡ 0 modp2n, so e ≡ p2n
− 1 modp2n, which does not

happen.
The total degree of ε̄1 · t

j (tµ2)
e is (2p−1)−2j+(2p2

−2)e ≡ (2p−1)+(2p2
−2)e

mod 2p2n. To have 2p − 1 ≡ (2p − 1) + (2p2
− 2)e mod 2p2n, we must have e ≡ 0

modp2n, so e = 0 is the only possibility in the allowable range. In that case, a check of
total degrees shows that we must have j = p2n+1

− p2n+2
+ i. ut

Corollary 6.7. V (1)∗THH(`/p)Cpn is finite in each degree.

Proof. This is clear by inspection of the E∞-term in Corollary 6.2. ut
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Lemma 6.8. The map Gn induces an isomorphism

V (1)∗THH(`/p)tCpn+1
∼=
−→ V (1)∗(ρ∗pTHH(`/p)tCp )hCpn

in all degrees. In the limit over the Frobenius maps F , there is a map G inducing an
isomorphism

V (1)∗THH(`/p)tS
1 ∼=
−→ V (1)∗(ρ∗pTHH(`/p)tCp )hS

1
. (6.4)

Proof. As remarked after diagram (6.1), Gn induces an isomorphism in V (1)-homotopy
above degree 2p − 2. The permanent cycle t−p

2n+2
in Ê∞(Cpn+1 , `) acts invertibly on

Ê∞(Cpn+1 , `/p), and its image Gn(t−p
2n+2

) = µ
p2n

2 in µ−1
2 E∞(Cpn , `) acts invertibly

on µ−1
2 E∞(Cpn , `/p). Therefore the module action derived from the `-algebra structure

on `/p ensures that Gn induces isomorphisms in V (1)-homotopy in all degrees. ut

Theorem 6.9. The isomorphism (6.4) admits the following description at the associated
graded level:

(a) The associated graded of V (1)∗THH(`/p)tS
1

for the S1-Tate spectral sequence is

Ê∞(S1, `/p) = E(λ2)⊗ Fp{t−i | 0 < i < p} ⊗ P(t±p
2
)

⊕

⊕
k≥2

E(λ2)⊗ Fp{tj | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−3)(tµ2)

⊕

⊕
k≥2

E(ε̄1)⊗ Fp{tjλ2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k−2)(tµ2)

⊕ E(ε̄1, λ2)⊗ P(tµ2).

(b) The associated graded of V (1)∗THH(`/p)hS
1

for the S1-homotopy fixed point spec-
tral sequence maps by a (2p − 2)-coconnected map to

µ−1
2 E∞(S1, `/p) = E(λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ±1

2 )

⊕

⊕
k≥1

E(λ2)⊗ Fp{µ
j

2 | j ∈ Z, vp(j) = 2k − 2} ⊗ Pρ(2k−1)(tµ2)

⊕

⊕
k≥1

E(ε̄1)⊗ Fp{λ2µ
j

2 | j ∈ Z, vp(j) = 2k − 1} ⊗ Pρ(2k)(tµ2)

⊕ E(ε̄1, λ2)⊗ P(tµ2).

(c) The isomorphism from (a) to (b) induced by G takes t−i to µi0 for 0 < i < p and t i

to µj2 for i+p2j = 0, up to a unit factor in Fp. Furthermore, it takes multiples by ε̄1,
λ2 or tµ2 in the source to the same multiples in the target, up to a unit factor in Fp.

Proof. Claims (a) and (b) follow by passage to the limit over n from Corollaries 6.2
and 6.4. Claim (c) follows by passage to the same limit from the formulas for the isomor-
phism induced by 0̂n+1, which were given below diagram (6.3). ut
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7. Topological cyclic homology

By definition, there is a fibre sequence

T C(B;p)
π
−→ T F(B;p)

R−1
−−→ T F(B;p)→ 6TC(B;p)

inducing a long exact sequence

· · ·
∂
−→ V (1)∗T C(B;p)

π
−→ V (1)∗T F(B;p)

R∗−1
−−−→ V (1)∗T F(B;p)

∂
−→ · · · (7.1)

in V (1)-homotopy. By Corollary 5.9, there are (2p − 2)-coconnected maps 0 and 0̂
from V (1)∗T F(`/p;p) to V (1)∗THH(`/p)hS

1
and V (1)∗THH(`/p)tS

1
, respectively.

We model V (1)∗T F(`/p;p) in degrees > (2p − 2) by the map 0̂ to the S1-Tate con-
struction. Then, by diagram (6.1), R∗ is modeled in the same range of degrees by the
chain of maps below:

V (1)∗THH(B)tS
1

G

))

V (1)∗THH(B)hS
1

(0̂1)
hS1

��

Rh∗ // V (1)∗THH(B)tS
1

V (1)∗(ρ∗pTHH(B)tCp )hS
1

Here Rh induces a map of spectral sequences

E∗(Rh) : E∗(S1, B)→ Ê∗(S1, B)

(abutting to Rh∗ ), which at the E2-term equals the inclusion that algebraically inverts t .
When B = `/p, the left hand map G is an isomorphism by Lemma 6.8, and the middle
(wrong-way) map is (2p − 2)-coconnected.

Proposition 7.1. In degrees > 2p − 2, the homomorphism

E∞(Rh) : E∞(S1, `/p)→ Ê∞(S1, `/p)

maps

(a) E(ε̄1, λ2)⊗ P(tµ2) identically to the same expression;
(b) E(λ2)⊗Fp{µ

−j

2 }⊗Pρ(2k−1)(tµ2) surjectively onto E(λ2)⊗Fp{tj }⊗Pρ(2k−3)(tµ2)

for each k ≥ 2, j = dp2k−2, 0 < d < p2
− p and p - d;

(c) E(ε̄1)⊗Fp{λ2µ
−j

2 }⊗Pρ(2k)(tµ2) surjectively ontoE(ε̄1)⊗Fp{tjλ2}⊗Pρ(2k−2)(tµ2)

for each k ≥ 2, j = dp2k−1 and 0 < d < p;
(d) the remaining terms to zero.

Notice that in statements (b) and (c) above, we abuse notation and identify the components
of degree > 2p − 2 of E∞(S1, `/p) and µ−1

2 E∞(S1, `/p), using Theorem 6.9(b).
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Proof. Consider the summands ofE∞(S1, `/p) and Ê∞(S1, `/p) given in Theorem 6.9.
Clearly, the first term E(λ2)⊗ Fp{µi0 | 0 < i < p} ⊗ P(µ2) goes to zero (these classes
are hit by d2-differentials), and the last term E(ε̄1, λ2)⊗ P(tµ2) maps identically to the
same term. This proves (a) and part of (d).

For each k ≥ 1 and j = dp2k−2 with p - d, the termE(λ2)⊗Fp{µ
−j

2 }⊗Pρ(2k−1)(tµ2)

maps to the term E(λ2) ⊗ Fp{tj } ⊗ Pρ(2k−3)(tµ2), except that the target is zero for
k = 1. In symbols, the element λδ2µ

−j

2 (tµ2)
i maps to λδ2t

j (tµ2)
i−j . If d < 0, then the

t-exponent in the target is bounded above by dp2k−2
+ ρ(2k − 3) < 0, so the target

lives in the right half-plane and is essentially not hit by the source, which lives in the
left half-plane. If d > p2

− p, then the total degree in the source is bounded above by
(2p2
− 1) − 2dp2k

+ ρ(2k − 1)(2p2
− 2) < 2p − 2, so the source lives in total degree

< 2p−2 and will be disregarded. If 0 < d < p2
−p, then ρ(2k−1)−dp2k−2 > ρ(2k−3)

and −dp2k−2 < 0, so the source surjects onto the target. This proves (b) and part of (d).
Lastly, for each k ≥ 1 and j = dp2k−1 with p - d , the term E(ε̄1) ⊗ Fp{λ2µ

−j

2 } ⊗

Pρ(2k)(tµ2) maps to the term E(ε̄1) ⊗ Fp{tjλ2} ⊗ Pρ(2k−2)(tµ2). The target is zero for
k = 1. If d < 0, then dp2k−1

+ρ(2k−2) < 0 so the target lives in the right half-plane. If
d > p, then (2p− 1)+ (2p2

− 1)− 2dp2k+1
+ ρ(2k)(2p2

− 2) < 2p− 2, so the source
lives in total degree < 2p − 2. If 0 < d < p, then ρ(2k) − dp2k−1 > ρ(2k − 2) and
−dp2k−1 < 0, so the source surjects onto the target. This proves (c) and the remaining
part of (d). ut

Definition 7.2. Let

A = E(ε̄1, λ2)⊗ P(tµ2),

Bk = E(λ2)⊗ Fp{tdp
2k−2
| 0 < d < p2

− p, p - d} ⊗ Pρ(2k−3)(tµ2),

Ck = E(ε̄1)⊗ Fp{tdp
2k−1

λ2 | 0 < d < p} ⊗ Pρ(2k−2)(tµ2)

for k ≥ 2 and let D be the span of the remaining monomials in Ê∞(S1, `/p). Let B =⊕
k≥2 Bk and C =

⊕
k≥2 Ck . Then Ê∞(S1, `/p) = A⊕ B ⊕ C ⊕D.

Proposition 7.3. In degrees > 2p − 2, there are closed subgroups Ã = E(ε̄1, λ2) ⊗

P(v2), B̃k , C̃k and D̃ in V (1)∗T F(`/p;p), represented by the subgroups A, Bk , Ck and
D of Ê∞(S1, `/p), respectively, such that the homomorphism R∗ = V (1)∗R induced by
the restriction map R

(a) is the identity on Ã;
(b) maps B̃k+1 surjectively onto B̃k for all k ≥ 2;
(c) maps C̃k+1 surjectively onto C̃k for all k ≥ 2;
(d) is zero on B̃2, C̃2 and D̃.

In these degrees, V (1)∗T F(`/p;p) ∼= Ã ⊕ B̃ ⊕ C̃ ⊕ D̃, where B̃ =
∏
k≥2 B̃k and

C̃ =
∏
k≥2 C̃k .
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Proof. The proof is the same as the proof of [AR02, Th. 7.7], except that in the present
paper we work with the Tate model THH(`/p)tS

1
for T F(`/p;p), in place of the ho-

motopy fixed point model THH(`/p)hS
1
. The computations are made in V (1)-homotopy,

and we disregard all classes in total degrees ≤ 2p − 2. For example with this conven-
tion we write µ−1

2 E∞(S1, `/p) ∼= E∞(S1, `/p), using the same abuse of notation as in
Proposition 7.1.

In these terms, the restriction homomorphism R∗ is given at the level of E∞-terms as
the composite of the isomorphism

G∗ : Ê∞(S1, `/p)→ µ−1
2 E∞(S1, `/p) ∼= E

∞(S1, `/p)

and the map
E∞(Rh) : E∞(S1, `/p)→ Ê∞(S1, `/p).

As an endomorphism of Ê∞(S1, `/p), this composite E∞(Rh)G∗ is the identity on A,
maps Bk+1 onto Bk and Ck+1 onto Ck for all k ≥ 2, and is zero on B2, C2 and D, by
Theorem 6.9(c) and Proposition 7.1. The task is to find closed lifts of these groups to
V (1)∗T F(`/p;p) such that R∗ has similar properties.

Let Ã = E(ε̄1, λ2) ⊗ P(v2) ⊂ V (1)∗T F(`/p;p) be the (degreewise finite, hence
closed) subalgebra generated by the images of the classes ε̄K1 , λ2 and v2 in V (1)∗K(`/p).
Then Ã lifts A and consists of classes in the image of the trace map from V (1)∗K(`/p).
Hence R∗ is the identity on Ã.

We fix k ≥ 2 and choose, for all n ≥ 0, a subgroup Bnk ⊂ Bk+n, as follows. We take

B0
k = Bk ∩ ker(E∞(Rh)G∗)

=


B2 for k = 2,

E(λ2)⊗
⊕

0<d<p2−p, p-d
Fp{tdp

2k−2
} ⊗ P

ρ(2k−3)−1
dp2k−4+ρ(2k−5)(tµ2) for k ≥ 3,

where P ba (tµ2) = Fp{(tµ2)
c
| a ≤ c ≤ b}. We proceed by induction on n for n ≥ 1,

choosing a subgroup Bnk of Bk+n mapping isomorphically onto Bn−1
k under E∞(Rh)G∗

(such a group exists by Theorem 6.9(c) and Proposition 7.1(b)). We then have

Bk =

k−2⊕
n=0

Bnk−n.

By the argument given on top of page 31 of [AR02], we can choose a lift B̃0
k of B0

k with

B̃0
k ⊂ im(R∗) ∩ ker(R∗)

in V (1)∗T F(`/p;p). By induction on n ≥ 1, we choose a lift B̃nk ⊂ im(R∗) of Bnk
mapping isomorphically onto B̃n−1

k under R∗. Such a choice is possible since the image
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of R∗ on V (1)∗T F(`/p;p) equals the image of its restriction to im(R∗) (see [AR02,
p. 30]). Now

B̃k =

k−2⊕
n=0

B̃nk−n

is a (degreewise finite, hence closed) lift of Bk with R∗(B̃2) = 0 and R∗(B̃k) = B̃k−1 for
k ≥ 3.

To construct C̃k we proceed as for B̃k above, starting with C0
2 = C2 and

C0
k = Ck ∩ ker(E∞(Rh)G∗)

= E(ε̄1)⊗
⊕

0<d<p

Fp{tdp
2k−1

λ2} ⊗ P
ρ(2k−2)−1
dp2k−3+ρ(2k−4)(tµ2)

for k ≥ 3, and using Theorem 6.9(c) and Proposition 7.1(c) to choose Cnk for n ≥ 1.
It remains to construct D̃. By Proposition 7.1(d), the isomorphism G∗ maps D into

ker(E∞(Rh)). By [AR02, Lem. 7.3] the representatives in E∞(S1, `/p) of the kernel
of Rh∗ equal the kernel of E∞(Rh). It follows that the representatives in Ê∞(S1, `/p) of
the kernel of R∗ are mapped isomorphically by G∗ to ker(E∞(Rh)). Hence we can pick
a vector space basis for D, choose a representative in ker(R∗) ⊂ V (1)∗T F(`/p;p) of
each basis element, and let D̃ ⊂ V (1)∗T F(`/p;p) be the closure of the vector space
spanned by these chosen representatives. This closure is contained in ker(R∗) since R∗ is
continuous. Hence R∗ is zero on D̃. ut

Proposition 7.4. In degrees > 2p − 2 there are isomorphisms

ker(R∗ − 1) ∼= Ã⊕ lim
k
B̃k ⊕ lim

k
C̃k

∼= E(ε̄1, λ2)⊗ P(v2)

⊕ E(λ2)⊗ Fp{td | 0 < d < p2
− p, p - d} ⊗ P(v2)

⊕ E(ε̄1)⊗ Fp{tdpλ2 | 0 < d < p} ⊗ P(v2)

and cok(R∗ − 1) ∼= Ã = E(ε̄1, λ2)⊗ P(v2). Hence there is an isomorphism

V (1)∗T C(`/p;p) ∼= E(∂, ε̄1, λ2)⊗ P(v2)

⊕ E(λ2)⊗ Fp{td | 0 < d < p2
− p, p - d} ⊗ P(v2)

⊕ E(ε̄1)⊗ Fp{tdpλ2 | 0 < d < p} ⊗ P(v2)

in these degrees, where ∂ has degree −1 and represents the image of 1 under the con-
necting map ∂ in (7.1).
Proof. By Proposition 7.3, the homomorphism R∗ − 1 is zero on Ã and an isomorphism
on D̃. Furthermore, there is an exact sequence

0→ lim
k
B̃k →

∏
k≥2

B̃k
R∗−1
−−−→

∏
k≥2

B̃k → lim1
k
B̃k → 0

and similarly for the C’s. The derived limit on the right vanishes since each B̃k+1 surjects
onto B̃k .
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Multiplication by tµ2 in each Bk is realized by multiplication by v2 in B̃k . Each B̃k is
a sum of 2(p − 1)2 cyclic P(v2)-modules, and since ρ(2k − 3) grows to infinity with k
their limit is a free P(v2)-module of the same rank, with the indicated generators td and
tdλ2 for 0 < d < p2

− p, p - d. The argument for the C’s is practically the same.
The long exact sequence (7.1) yields the short exact sequence

0→ 6−1 cok(R∗ − 1)
∂
−→ V (1)∗T C(`/p;p)

π
−→ ker(R∗ − 1)→ 0,

from which the formula for the middle term follows. ut

Remark 7.5. A more obvious set ofE(λ2)⊗P(v2)-module generators for limk B̃k would
be the classes tdp

2
in B2 ∼= B̃2, for 0 < d < p2

− p, p - d . We have a commutative
diagram

T F(`/p;p)
0̂ //

��

THH(`/p)tS
1

FG

��

THH(`/p)Cp
G10̂2 // (ρ∗pTHH(`/p)tCp )hCp

Under the left-hand canonical map T F(`/p;p)→ THH(`/p)Cp , modelled here by

FG : THH(`/p)tS
1
→ (ρ∗pTHH(`/p)tCp )hS

1
→ (ρ∗pTHH(`/p)tCp )hCp ,

the class tdp
2

maps to µ−d2 . Since we are only concerned with degrees > 2p − 2 we may
equally well use its v2-power multiple (tµ2)

d
·µ−d2 = t

d as generator, with the advantage
that it is in the image of the localization map

THH(`/p)hCp → (ρ∗pTHH(`/p)tCp )hCp .

Hence the class denoted td in limk B̃k is chosen so as to map under T F(`/p;p) →
THH(`/p)hCp to td in E∞(Cp, `/p). Similarly, the class denoted tdpλ2 in limk C̃k is
chosen so as to map to tdpλ2 in E∞(Cp, `/p).

The map π : `/p → Z/p is (2p − 2)-connected, hence induces (2p − 1)-connected
maps π∗ : K(`/p) → K(Z/p) and π∗ : V (1)∗T C(`/p;p) → V (1)∗T C(Z/p;p),
by [BM94, Prop. 10.9] and [Dun97, p. 224]. Here T C(Z/p;p) ' HZp ∨ 6−1HZp
and we have an isomorphism V (1)∗T C(Z/p;p) ∼= E(∂, ε̄1), so we can recover
V (1)∗T C(`/p;p) in degrees ≤ 2p − 2 from this map.

Theorem 7.6. There is an isomorphism of P(v2)-modules

V (1)∗T C(`/p;p) ∼= P(v2)⊗ E(∂, ε̄1, λ2)

⊕ P(v2)⊗ E(dlog v1)⊗ Fp{tdv2 | 0 < d < p2
− p, p - d}

⊕ P(v2)⊗ E(ε̄1)⊗ Fp{tdpλ2 | 0 < d < p}

where dlog v1 · t
dv2 = t

dλ2. The degrees are |∂| = −1, |ε̄1| = |λ1| = 2p − 1, |λ2| =

2p2
− 1, |v2| = 2p2

− 2, |t | = −2 and |dlog v1| = 1.
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The notation dlog v1 for the multiplier v−1
2 λ2 is suggested by the relation v1 ·dlogp = λ1

in V (0)∗T C(Z(p)|Q;p).

Proof. Only the additive generators td for 0 < d < p2
− p, p - d from Proposition 7.4

do not appear in V (1)∗T C(`/p;p), but their multiples by λ2 and positive powers of v2
do. This leads to the given formula, where dlog v1 · t

dv2 must be read as tdλ2. ut

By [HM97, Th. C] the cyclotomic trace map of [BHM93] induces cofibre sequences

K(Bp)p
trc
−→ T C(B;p)p

g
−→ 6−1HZp → 6K(Bp)p

for each connective S-algebra B with π0(Bp) = Zp or Z/p, and thus long exact se-
quences

· · · → V (1)∗K(Bp)
trc
−→ V (1)∗T C(B;p)

g
−→ 6−1E(ε̄1)→ · · · .

This uses the identifications W(Zp)F ∼= W(Z/p)F ∼= Zp of Frobenius coinvariants of
rings of Witt vectors, and applies in particular for B = HZ(p), HZ/p, ` and `/p.

Theorem 7.7. There is an isomorphism of P(v2)-modules

V (1)∗K(`/p) ∼= P(v2)⊗ E(ε̄1)⊗ Fp{1, ∂λ2, λ2, ∂v2}

⊕ P(v2)⊗ E(dlog v1)⊗ Fp{tdv2 | 0 < d < p2
− p, p - d}

⊕ P(v2)⊗ E(ε̄1)⊗ Fp{tdpλ2 | 0 < d < p}.

This is a free P(v2)-module of rank 2p2
− 2p + 8 and of zero Euler characteristic.

Proof. In the case B = Z/p, K(Z/p)p ' HZp and the map g is split surjective up to
homotopy. So the induced homomorphism to V (1)∗6−1HZp = 6−1E(ε̄1) is surjective.
Since π : `/p→ Z/p induces a (2p−1)-connected map in topological cyclic homology,
and 6−1E(ε̄1) is concentrated in degrees ≤ 2p − 2, it follows by naturality that also in
the case B = `/p the map g induces a surjection in V (1)-homotopy. The kernel of the
surjection P(v2)⊗E(∂, ε̄1, λ2)→ 6−1E(ε̄1) gives the first row in the asserted formula.

ut
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